Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onsucsssucr | Unicode version |
Description: The subclass relationship between two ordinals is inherited by their predecessors. The converse implies excluded middle, as shown at onsucsssucexmid 4504. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.) |
Ref | Expression |
---|---|
onsucsssucr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsucim 4477 | . . 3 | |
2 | ordelsuc 4482 | . . 3 | |
3 | 1, 2 | sylan2 284 | . 2 |
4 | ordtr 4356 | . . . 4 | |
5 | trsucss 4401 | . . . 4 | |
6 | 4, 5 | syl 14 | . . 3 |
7 | 6 | adantl 275 | . 2 |
8 | 3, 7 | sylbird 169 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2136 wss 3116 wtr 4080 word 4340 con0 4341 csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-uni 3790 df-tr 4081 df-iord 4344 df-suc 4349 |
This theorem is referenced by: nnsucsssuc 6460 |
Copyright terms: Public domain | W3C validator |