ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucsssucr Unicode version

Theorem onsucsssucr 4493
Description: The subclass relationship between two ordinals is inherited by their predecessors. The converse implies excluded middle, as shown at onsucsssucexmid 4511. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.)
Assertion
Ref Expression
onsucsssucr  |-  ( ( A  e.  On  /\  Ord  B )  ->  ( suc  A  C_  suc  B  ->  A  C_  B ) )

Proof of Theorem onsucsssucr
StepHypRef Expression
1 ordsucim 4484 . . 3  |-  ( Ord 
B  ->  Ord  suc  B
)
2 ordelsuc 4489 . . 3  |-  ( ( A  e.  On  /\  Ord  suc  B )  -> 
( A  e.  suc  B  <->  suc  A  C_  suc  B ) )
31, 2sylan2 284 . 2  |-  ( ( A  e.  On  /\  Ord  B )  ->  ( A  e.  suc  B  <->  suc  A  C_  suc  B ) )
4 ordtr 4363 . . . 4  |-  ( Ord 
B  ->  Tr  B
)
5 trsucss 4408 . . . 4  |-  ( Tr  B  ->  ( A  e.  suc  B  ->  A  C_  B ) )
64, 5syl 14 . . 3  |-  ( Ord 
B  ->  ( A  e.  suc  B  ->  A  C_  B ) )
76adantl 275 . 2  |-  ( ( A  e.  On  /\  Ord  B )  ->  ( A  e.  suc  B  ->  A  C_  B ) )
83, 7sylbird 169 1  |-  ( ( A  e.  On  /\  Ord  B )  ->  ( suc  A  C_  suc  B  ->  A  C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2141    C_ wss 3121   Tr wtr 4087   Ord word 4347   Oncon0 4348   suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-uni 3797  df-tr 4088  df-iord 4351  df-suc 4356
This theorem is referenced by:  nnsucsssuc  6471
  Copyright terms: Public domain W3C validator