ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucsssucr Unicode version

Theorem onsucsssucr 4462
Description: The subclass relationship between two ordinals is inherited by their predecessors. The converse implies excluded middle, as shown at onsucsssucexmid 4480. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.)
Assertion
Ref Expression
onsucsssucr  |-  ( ( A  e.  On  /\  Ord  B )  ->  ( suc  A  C_  suc  B  ->  A  C_  B ) )

Proof of Theorem onsucsssucr
StepHypRef Expression
1 ordsucim 4453 . . 3  |-  ( Ord 
B  ->  Ord  suc  B
)
2 ordelsuc 4458 . . 3  |-  ( ( A  e.  On  /\  Ord  suc  B )  -> 
( A  e.  suc  B  <->  suc  A  C_  suc  B ) )
31, 2sylan2 284 . 2  |-  ( ( A  e.  On  /\  Ord  B )  ->  ( A  e.  suc  B  <->  suc  A  C_  suc  B ) )
4 ordtr 4333 . . . 4  |-  ( Ord 
B  ->  Tr  B
)
5 trsucss 4378 . . . 4  |-  ( Tr  B  ->  ( A  e.  suc  B  ->  A  C_  B ) )
64, 5syl 14 . . 3  |-  ( Ord 
B  ->  ( A  e.  suc  B  ->  A  C_  B ) )
76adantl 275 . 2  |-  ( ( A  e.  On  /\  Ord  B )  ->  ( A  e.  suc  B  ->  A  C_  B ) )
83, 7sylbird 169 1  |-  ( ( A  e.  On  /\  Ord  B )  ->  ( suc  A  C_  suc  B  ->  A  C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2125    C_ wss 3098   Tr wtr 4058   Ord word 4317   Oncon0 4318   suc csuc 4320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-sn 3562  df-uni 3769  df-tr 4059  df-iord 4321  df-suc 4326
This theorem is referenced by:  nnsucsssuc  6428
  Copyright terms: Public domain W3C validator