Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onsucsssucr | Unicode version |
Description: The subclass relationship between two ordinals is inherited by their predecessors. The converse implies excluded middle, as shown at onsucsssucexmid 4480. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.) |
Ref | Expression |
---|---|
onsucsssucr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsucim 4453 | . . 3 | |
2 | ordelsuc 4458 | . . 3 | |
3 | 1, 2 | sylan2 284 | . 2 |
4 | ordtr 4333 | . . . 4 | |
5 | trsucss 4378 | . . . 4 | |
6 | 4, 5 | syl 14 | . . 3 |
7 | 6 | adantl 275 | . 2 |
8 | 3, 7 | sylbird 169 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2125 wss 3098 wtr 4058 word 4317 con0 4318 csuc 4320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-sn 3562 df-uni 3769 df-tr 4059 df-iord 4321 df-suc 4326 |
This theorem is referenced by: nnsucsssuc 6428 |
Copyright terms: Public domain | W3C validator |