ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucim Unicode version

Theorem ordsucim 4547
Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.)
Assertion
Ref Expression
ordsucim  |-  ( Ord 
A  ->  Ord  suc  A
)

Proof of Theorem ordsucim
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ordtr 4424 . . 3  |-  ( Ord 
A  ->  Tr  A
)
2 suctr 4467 . . 3  |-  ( Tr  A  ->  Tr  suc  A
)
31, 2syl 14 . 2  |-  ( Ord 
A  ->  Tr  suc  A
)
4 df-suc 4417 . . . . . 6  |-  suc  A  =  ( A  u.  { A } )
54eleq2i 2271 . . . . 5  |-  ( x  e.  suc  A  <->  x  e.  ( A  u.  { A } ) )
6 elun 3313 . . . . 5  |-  ( x  e.  ( A  u.  { A } )  <->  ( x  e.  A  \/  x  e.  { A } ) )
7 velsn 3649 . . . . . 6  |-  ( x  e.  { A }  <->  x  =  A )
87orbi2i 763 . . . . 5  |-  ( ( x  e.  A  \/  x  e.  { A } )  <->  ( x  e.  A  \/  x  =  A ) )
95, 6, 83bitri 206 . . . 4  |-  ( x  e.  suc  A  <->  ( x  e.  A  \/  x  =  A ) )
10 dford3 4413 . . . . . . . 8  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
1110simprbi 275 . . . . . . 7  |-  ( Ord 
A  ->  A. x  e.  A  Tr  x
)
12 df-ral 2488 . . . . . . 7  |-  ( A. x  e.  A  Tr  x 
<-> 
A. x ( x  e.  A  ->  Tr  x ) )
1311, 12sylib 122 . . . . . 6  |-  ( Ord 
A  ->  A. x
( x  e.  A  ->  Tr  x ) )
141319.21bi 1580 . . . . 5  |-  ( Ord 
A  ->  ( x  e.  A  ->  Tr  x
) )
15 treq 4147 . . . . . 6  |-  ( x  =  A  ->  ( Tr  x  <->  Tr  A )
)
161, 15syl5ibrcom 157 . . . . 5  |-  ( Ord 
A  ->  ( x  =  A  ->  Tr  x
) )
1714, 16jaod 718 . . . 4  |-  ( Ord 
A  ->  ( (
x  e.  A  \/  x  =  A )  ->  Tr  x ) )
189, 17biimtrid 152 . . 3  |-  ( Ord 
A  ->  ( x  e.  suc  A  ->  Tr  x ) )
1918ralrimiv 2577 . 2  |-  ( Ord 
A  ->  A. x  e.  suc  A Tr  x
)
20 dford3 4413 . 2  |-  ( Ord 
suc  A  <->  ( Tr  suc  A  /\  A. x  e. 
suc  A Tr  x
) )
213, 19, 20sylanbrc 417 1  |-  ( Ord 
A  ->  Ord  suc  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709   A.wal 1370    = wceq 1372    e. wcel 2175   A.wral 2483    u. cun 3163   {csn 3632   Tr wtr 4141   Ord word 4408   suc csuc 4411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-uni 3850  df-tr 4142  df-iord 4412  df-suc 4417
This theorem is referenced by:  onsuc  4548  ordsucg  4549  onsucsssucr  4556  ordtriexmidlem  4566  2ordpr  4571  ordsuc  4610  nnsucsssuc  6577
  Copyright terms: Public domain W3C validator