ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucim Unicode version

Theorem ordsucim 4561
Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.)
Assertion
Ref Expression
ordsucim  |-  ( Ord 
A  ->  Ord  suc  A
)

Proof of Theorem ordsucim
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ordtr 4438 . . 3  |-  ( Ord 
A  ->  Tr  A
)
2 suctr 4481 . . 3  |-  ( Tr  A  ->  Tr  suc  A
)
31, 2syl 14 . 2  |-  ( Ord 
A  ->  Tr  suc  A
)
4 df-suc 4431 . . . . . 6  |-  suc  A  =  ( A  u.  { A } )
54eleq2i 2273 . . . . 5  |-  ( x  e.  suc  A  <->  x  e.  ( A  u.  { A } ) )
6 elun 3318 . . . . 5  |-  ( x  e.  ( A  u.  { A } )  <->  ( x  e.  A  \/  x  e.  { A } ) )
7 velsn 3655 . . . . . 6  |-  ( x  e.  { A }  <->  x  =  A )
87orbi2i 764 . . . . 5  |-  ( ( x  e.  A  \/  x  e.  { A } )  <->  ( x  e.  A  \/  x  =  A ) )
95, 6, 83bitri 206 . . . 4  |-  ( x  e.  suc  A  <->  ( x  e.  A  \/  x  =  A ) )
10 dford3 4427 . . . . . . . 8  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
1110simprbi 275 . . . . . . 7  |-  ( Ord 
A  ->  A. x  e.  A  Tr  x
)
12 df-ral 2490 . . . . . . 7  |-  ( A. x  e.  A  Tr  x 
<-> 
A. x ( x  e.  A  ->  Tr  x ) )
1311, 12sylib 122 . . . . . 6  |-  ( Ord 
A  ->  A. x
( x  e.  A  ->  Tr  x ) )
141319.21bi 1582 . . . . 5  |-  ( Ord 
A  ->  ( x  e.  A  ->  Tr  x
) )
15 treq 4159 . . . . . 6  |-  ( x  =  A  ->  ( Tr  x  <->  Tr  A )
)
161, 15syl5ibrcom 157 . . . . 5  |-  ( Ord 
A  ->  ( x  =  A  ->  Tr  x
) )
1714, 16jaod 719 . . . 4  |-  ( Ord 
A  ->  ( (
x  e.  A  \/  x  =  A )  ->  Tr  x ) )
189, 17biimtrid 152 . . 3  |-  ( Ord 
A  ->  ( x  e.  suc  A  ->  Tr  x ) )
1918ralrimiv 2579 . 2  |-  ( Ord 
A  ->  A. x  e.  suc  A Tr  x
)
20 dford3 4427 . 2  |-  ( Ord 
suc  A  <->  ( Tr  suc  A  /\  A. x  e. 
suc  A Tr  x
) )
213, 19, 20sylanbrc 417 1  |-  ( Ord 
A  ->  Ord  suc  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710   A.wal 1371    = wceq 1373    e. wcel 2177   A.wral 2485    u. cun 3168   {csn 3638   Tr wtr 4153   Ord word 4422   suc csuc 4425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-uni 3860  df-tr 4154  df-iord 4426  df-suc 4431
This theorem is referenced by:  onsuc  4562  ordsucg  4563  onsucsssucr  4570  ordtriexmidlem  4580  2ordpr  4585  ordsuc  4624  nnsucsssuc  6596
  Copyright terms: Public domain W3C validator