Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordsucim | Unicode version |
Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.) |
Ref | Expression |
---|---|
ordsucim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 4372 | . . 3 | |
2 | suctr 4415 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | df-suc 4365 | . . . . . 6 | |
5 | 4 | eleq2i 2242 | . . . . 5 |
6 | elun 3274 | . . . . 5 | |
7 | velsn 3606 | . . . . . 6 | |
8 | 7 | orbi2i 762 | . . . . 5 |
9 | 5, 6, 8 | 3bitri 206 | . . . 4 |
10 | dford3 4361 | . . . . . . . 8 | |
11 | 10 | simprbi 275 | . . . . . . 7 |
12 | df-ral 2458 | . . . . . . 7 | |
13 | 11, 12 | sylib 122 | . . . . . 6 |
14 | 13 | 19.21bi 1556 | . . . . 5 |
15 | treq 4102 | . . . . . 6 | |
16 | 1, 15 | syl5ibrcom 157 | . . . . 5 |
17 | 14, 16 | jaod 717 | . . . 4 |
18 | 9, 17 | biimtrid 152 | . . 3 |
19 | 18 | ralrimiv 2547 | . 2 |
20 | dford3 4361 | . 2 | |
21 | 3, 19, 20 | sylanbrc 417 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 708 wal 1351 wceq 1353 wcel 2146 wral 2453 cun 3125 csn 3589 wtr 4096 word 4356 csuc 4359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-uni 3806 df-tr 4097 df-iord 4360 df-suc 4365 |
This theorem is referenced by: suceloni 4494 ordsucg 4495 onsucsssucr 4502 ordtriexmidlem 4512 2ordpr 4517 ordsuc 4556 nnsucsssuc 6483 |
Copyright terms: Public domain | W3C validator |