ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucim Unicode version

Theorem ordsucim 4477
Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.)
Assertion
Ref Expression
ordsucim  |-  ( Ord 
A  ->  Ord  suc  A
)

Proof of Theorem ordsucim
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ordtr 4356 . . 3  |-  ( Ord 
A  ->  Tr  A
)
2 suctr 4399 . . 3  |-  ( Tr  A  ->  Tr  suc  A
)
31, 2syl 14 . 2  |-  ( Ord 
A  ->  Tr  suc  A
)
4 df-suc 4349 . . . . . 6  |-  suc  A  =  ( A  u.  { A } )
54eleq2i 2233 . . . . 5  |-  ( x  e.  suc  A  <->  x  e.  ( A  u.  { A } ) )
6 elun 3263 . . . . 5  |-  ( x  e.  ( A  u.  { A } )  <->  ( x  e.  A  \/  x  e.  { A } ) )
7 velsn 3593 . . . . . 6  |-  ( x  e.  { A }  <->  x  =  A )
87orbi2i 752 . . . . 5  |-  ( ( x  e.  A  \/  x  e.  { A } )  <->  ( x  e.  A  \/  x  =  A ) )
95, 6, 83bitri 205 . . . 4  |-  ( x  e.  suc  A  <->  ( x  e.  A  \/  x  =  A ) )
10 dford3 4345 . . . . . . . 8  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
1110simprbi 273 . . . . . . 7  |-  ( Ord 
A  ->  A. x  e.  A  Tr  x
)
12 df-ral 2449 . . . . . . 7  |-  ( A. x  e.  A  Tr  x 
<-> 
A. x ( x  e.  A  ->  Tr  x ) )
1311, 12sylib 121 . . . . . 6  |-  ( Ord 
A  ->  A. x
( x  e.  A  ->  Tr  x ) )
141319.21bi 1546 . . . . 5  |-  ( Ord 
A  ->  ( x  e.  A  ->  Tr  x
) )
15 treq 4086 . . . . . 6  |-  ( x  =  A  ->  ( Tr  x  <->  Tr  A )
)
161, 15syl5ibrcom 156 . . . . 5  |-  ( Ord 
A  ->  ( x  =  A  ->  Tr  x
) )
1714, 16jaod 707 . . . 4  |-  ( Ord 
A  ->  ( (
x  e.  A  \/  x  =  A )  ->  Tr  x ) )
189, 17syl5bi 151 . . 3  |-  ( Ord 
A  ->  ( x  e.  suc  A  ->  Tr  x ) )
1918ralrimiv 2538 . 2  |-  ( Ord 
A  ->  A. x  e.  suc  A Tr  x
)
20 dford3 4345 . 2  |-  ( Ord 
suc  A  <->  ( Tr  suc  A  /\  A. x  e. 
suc  A Tr  x
) )
213, 19, 20sylanbrc 414 1  |-  ( Ord 
A  ->  Ord  suc  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698   A.wal 1341    = wceq 1343    e. wcel 2136   A.wral 2444    u. cun 3114   {csn 3576   Tr wtr 4080   Ord word 4340   suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-uni 3790  df-tr 4081  df-iord 4344  df-suc 4349
This theorem is referenced by:  suceloni  4478  ordsucg  4479  onsucsssucr  4486  ordtriexmidlem  4496  2ordpr  4501  ordsuc  4540  nnsucsssuc  6460
  Copyright terms: Public domain W3C validator