| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordsucim | Unicode version | ||
| Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.) |
| Ref | Expression |
|---|---|
| ordsucim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 4425 |
. . 3
| |
| 2 | suctr 4468 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | df-suc 4418 |
. . . . . 6
| |
| 5 | 4 | eleq2i 2272 |
. . . . 5
|
| 6 | elun 3314 |
. . . . 5
| |
| 7 | velsn 3650 |
. . . . . 6
| |
| 8 | 7 | orbi2i 764 |
. . . . 5
|
| 9 | 5, 6, 8 | 3bitri 206 |
. . . 4
|
| 10 | dford3 4414 |
. . . . . . . 8
| |
| 11 | 10 | simprbi 275 |
. . . . . . 7
|
| 12 | df-ral 2489 |
. . . . . . 7
| |
| 13 | 11, 12 | sylib 122 |
. . . . . 6
|
| 14 | 13 | 19.21bi 1581 |
. . . . 5
|
| 15 | treq 4148 |
. . . . . 6
| |
| 16 | 1, 15 | syl5ibrcom 157 |
. . . . 5
|
| 17 | 14, 16 | jaod 719 |
. . . 4
|
| 18 | 9, 17 | biimtrid 152 |
. . 3
|
| 19 | 18 | ralrimiv 2578 |
. 2
|
| 20 | dford3 4414 |
. 2
| |
| 21 | 3, 19, 20 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-uni 3851 df-tr 4143 df-iord 4413 df-suc 4418 |
| This theorem is referenced by: onsuc 4549 ordsucg 4550 onsucsssucr 4557 ordtriexmidlem 4567 2ordpr 4572 ordsuc 4611 nnsucsssuc 6578 |
| Copyright terms: Public domain | W3C validator |