ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucim Unicode version

Theorem ordsucim 4500
Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.)
Assertion
Ref Expression
ordsucim  |-  ( Ord 
A  ->  Ord  suc  A
)

Proof of Theorem ordsucim
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ordtr 4379 . . 3  |-  ( Ord 
A  ->  Tr  A
)
2 suctr 4422 . . 3  |-  ( Tr  A  ->  Tr  suc  A
)
31, 2syl 14 . 2  |-  ( Ord 
A  ->  Tr  suc  A
)
4 df-suc 4372 . . . . . 6  |-  suc  A  =  ( A  u.  { A } )
54eleq2i 2244 . . . . 5  |-  ( x  e.  suc  A  <->  x  e.  ( A  u.  { A } ) )
6 elun 3277 . . . . 5  |-  ( x  e.  ( A  u.  { A } )  <->  ( x  e.  A  \/  x  e.  { A } ) )
7 velsn 3610 . . . . . 6  |-  ( x  e.  { A }  <->  x  =  A )
87orbi2i 762 . . . . 5  |-  ( ( x  e.  A  \/  x  e.  { A } )  <->  ( x  e.  A  \/  x  =  A ) )
95, 6, 83bitri 206 . . . 4  |-  ( x  e.  suc  A  <->  ( x  e.  A  \/  x  =  A ) )
10 dford3 4368 . . . . . . . 8  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
1110simprbi 275 . . . . . . 7  |-  ( Ord 
A  ->  A. x  e.  A  Tr  x
)
12 df-ral 2460 . . . . . . 7  |-  ( A. x  e.  A  Tr  x 
<-> 
A. x ( x  e.  A  ->  Tr  x ) )
1311, 12sylib 122 . . . . . 6  |-  ( Ord 
A  ->  A. x
( x  e.  A  ->  Tr  x ) )
141319.21bi 1558 . . . . 5  |-  ( Ord 
A  ->  ( x  e.  A  ->  Tr  x
) )
15 treq 4108 . . . . . 6  |-  ( x  =  A  ->  ( Tr  x  <->  Tr  A )
)
161, 15syl5ibrcom 157 . . . . 5  |-  ( Ord 
A  ->  ( x  =  A  ->  Tr  x
) )
1714, 16jaod 717 . . . 4  |-  ( Ord 
A  ->  ( (
x  e.  A  \/  x  =  A )  ->  Tr  x ) )
189, 17biimtrid 152 . . 3  |-  ( Ord 
A  ->  ( x  e.  suc  A  ->  Tr  x ) )
1918ralrimiv 2549 . 2  |-  ( Ord 
A  ->  A. x  e.  suc  A Tr  x
)
20 dford3 4368 . 2  |-  ( Ord 
suc  A  <->  ( Tr  suc  A  /\  A. x  e. 
suc  A Tr  x
) )
213, 19, 20sylanbrc 417 1  |-  ( Ord 
A  ->  Ord  suc  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 708   A.wal 1351    = wceq 1353    e. wcel 2148   A.wral 2455    u. cun 3128   {csn 3593   Tr wtr 4102   Ord word 4363   suc csuc 4366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-sn 3599  df-uni 3811  df-tr 4103  df-iord 4367  df-suc 4372
This theorem is referenced by:  onsuc  4501  ordsucg  4502  onsucsssucr  4509  ordtriexmidlem  4519  2ordpr  4524  ordsuc  4563  nnsucsssuc  6493
  Copyright terms: Public domain W3C validator