ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucsssucr GIF version

Theorem onsucsssucr 4541
Description: The subclass relationship between two ordinals is inherited by their predecessors. The converse implies excluded middle, as shown at onsucsssucexmid 4559. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.)
Assertion
Ref Expression
onsucsssucr ((𝐴 ∈ On ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵𝐴𝐵))

Proof of Theorem onsucsssucr
StepHypRef Expression
1 ordsucim 4532 . . 3 (Ord 𝐵 → Ord suc 𝐵)
2 ordelsuc 4537 . . 3 ((𝐴 ∈ On ∧ Ord suc 𝐵) → (𝐴 ∈ suc 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))
31, 2sylan2 286 . 2 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))
4 ordtr 4409 . . . 4 (Ord 𝐵 → Tr 𝐵)
5 trsucss 4454 . . . 4 (Tr 𝐵 → (𝐴 ∈ suc 𝐵𝐴𝐵))
64, 5syl 14 . . 3 (Ord 𝐵 → (𝐴 ∈ suc 𝐵𝐴𝐵))
76adantl 277 . 2 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵𝐴𝐵))
83, 7sylbird 170 1 ((𝐴 ∈ On ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  wss 3153  Tr wtr 4127  Ord word 4393  Oncon0 4394  suc csuc 4396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-uni 3836  df-tr 4128  df-iord 4397  df-suc 4402
This theorem is referenced by:  nnsucsssuc  6545
  Copyright terms: Public domain W3C validator