| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucsssucr | GIF version | ||
| Description: The subclass relationship between two ordinals is inherited by their predecessors. The converse implies excluded middle, as shown at onsucsssucexmid 4575. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.) |
| Ref | Expression |
|---|---|
| onsucsssucr | ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsucim 4548 | . . 3 ⊢ (Ord 𝐵 → Ord suc 𝐵) | |
| 2 | ordelsuc 4553 | . . 3 ⊢ ((𝐴 ∈ On ∧ Ord suc 𝐵) → (𝐴 ∈ suc 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) | |
| 3 | 1, 2 | sylan2 286 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |
| 4 | ordtr 4425 | . . . 4 ⊢ (Ord 𝐵 → Tr 𝐵) | |
| 5 | trsucss 4470 | . . . 4 ⊢ (Tr 𝐵 → (𝐴 ∈ suc 𝐵 → 𝐴 ⊆ 𝐵)) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (Ord 𝐵 → (𝐴 ∈ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
| 7 | 6 | adantl 277 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
| 8 | 3, 7 | sylbird 170 | 1 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2176 ⊆ wss 3166 Tr wtr 4142 Ord word 4409 Oncon0 4410 suc csuc 4412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-uni 3851 df-tr 4143 df-iord 4413 df-suc 4418 |
| This theorem is referenced by: nnsucsssuc 6578 |
| Copyright terms: Public domain | W3C validator |