| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucsssucr | GIF version | ||
| Description: The subclass relationship between two ordinals is inherited by their predecessors. The converse implies excluded middle, as shown at onsucsssucexmid 4593. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.) |
| Ref | Expression |
|---|---|
| onsucsssucr | ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsucim 4566 | . . 3 ⊢ (Ord 𝐵 → Ord suc 𝐵) | |
| 2 | ordelsuc 4571 | . . 3 ⊢ ((𝐴 ∈ On ∧ Ord suc 𝐵) → (𝐴 ∈ suc 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) | |
| 3 | 1, 2 | sylan2 286 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |
| 4 | ordtr 4443 | . . . 4 ⊢ (Ord 𝐵 → Tr 𝐵) | |
| 5 | trsucss 4488 | . . . 4 ⊢ (Tr 𝐵 → (𝐴 ∈ suc 𝐵 → 𝐴 ⊆ 𝐵)) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (Ord 𝐵 → (𝐴 ∈ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
| 7 | 6 | adantl 277 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
| 8 | 3, 7 | sylbird 170 | 1 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2178 ⊆ wss 3174 Tr wtr 4158 Ord word 4427 Oncon0 4428 suc csuc 4430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-uni 3865 df-tr 4159 df-iord 4431 df-suc 4436 |
| This theorem is referenced by: nnsucsssuc 6601 |
| Copyright terms: Public domain | W3C validator |