Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onsucsssucr | GIF version |
Description: The subclass relationship between two ordinals is inherited by their predecessors. The converse implies excluded middle, as shown at onsucsssucexmid 4504. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.) |
Ref | Expression |
---|---|
onsucsssucr | ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsucim 4477 | . . 3 ⊢ (Ord 𝐵 → Ord suc 𝐵) | |
2 | ordelsuc 4482 | . . 3 ⊢ ((𝐴 ∈ On ∧ Ord suc 𝐵) → (𝐴 ∈ suc 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) | |
3 | 1, 2 | sylan2 284 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) |
4 | ordtr 4356 | . . . 4 ⊢ (Ord 𝐵 → Tr 𝐵) | |
5 | trsucss 4401 | . . . 4 ⊢ (Tr 𝐵 → (𝐴 ∈ suc 𝐵 → 𝐴 ⊆ 𝐵)) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (Ord 𝐵 → (𝐴 ∈ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
7 | 6 | adantl 275 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
8 | 3, 7 | sylbird 169 | 1 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 ⊆ wss 3116 Tr wtr 4080 Ord word 4340 Oncon0 4341 suc csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-uni 3790 df-tr 4081 df-iord 4344 df-suc 4349 |
This theorem is referenced by: nnsucsssuc 6460 |
Copyright terms: Public domain | W3C validator |