ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucsssucr GIF version

Theorem onsucsssucr 4557
Description: The subclass relationship between two ordinals is inherited by their predecessors. The converse implies excluded middle, as shown at onsucsssucexmid 4575. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.)
Assertion
Ref Expression
onsucsssucr ((𝐴 ∈ On ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵𝐴𝐵))

Proof of Theorem onsucsssucr
StepHypRef Expression
1 ordsucim 4548 . . 3 (Ord 𝐵 → Ord suc 𝐵)
2 ordelsuc 4553 . . 3 ((𝐴 ∈ On ∧ Ord suc 𝐵) → (𝐴 ∈ suc 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))
31, 2sylan2 286 . 2 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))
4 ordtr 4425 . . . 4 (Ord 𝐵 → Tr 𝐵)
5 trsucss 4470 . . . 4 (Tr 𝐵 → (𝐴 ∈ suc 𝐵𝐴𝐵))
64, 5syl 14 . . 3 (Ord 𝐵 → (𝐴 ∈ suc 𝐵𝐴𝐵))
76adantl 277 . 2 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵𝐴𝐵))
83, 7sylbird 170 1 ((𝐴 ∈ On ∧ Ord 𝐵) → (suc 𝐴 ⊆ suc 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2176  wss 3166  Tr wtr 4142  Ord word 4409  Oncon0 4410  suc csuc 4412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-uni 3851  df-tr 4143  df-iord 4413  df-suc 4418
This theorem is referenced by:  nnsucsssuc  6578
  Copyright terms: Public domain W3C validator