ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsucsssuc Unicode version

Theorem nnsucsssuc 6396
Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucsssucr 4433, but the forward direction, for all ordinals, implies excluded middle as seen as onsucsssucexmid 4450. (Contributed by Jim Kingdon, 25-Aug-2019.)
Assertion
Ref Expression
nnsucsssuc  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  suc 
A  C_  suc  B ) )

Proof of Theorem nnsucsssuc
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3125 . . . . . 6  |-  ( x  =  A  ->  (
x  C_  B  <->  A  C_  B
) )
2 suceq 4332 . . . . . . 7  |-  ( x  =  A  ->  suc  x  =  suc  A )
32sseq1d 3131 . . . . . 6  |-  ( x  =  A  ->  ( suc  x  C_  suc  B  <->  suc  A  C_  suc  B ) )
41, 3imbi12d 233 . . . . 5  |-  ( x  =  A  ->  (
( x  C_  B  ->  suc  x  C_  suc  B )  <->  ( A  C_  B  ->  suc  A  C_  suc  B ) ) )
54imbi2d 229 . . . 4  |-  ( x  =  A  ->  (
( B  e.  om  ->  ( x  C_  B  ->  suc  x  C_  suc  B ) )  <->  ( B  e.  om  ->  ( A  C_  B  ->  suc  A  C_  suc  B ) ) ) )
6 sseq1 3125 . . . . . 6  |-  ( x  =  (/)  ->  ( x 
C_  B  <->  (/)  C_  B
) )
7 suceq 4332 . . . . . . 7  |-  ( x  =  (/)  ->  suc  x  =  suc  (/) )
87sseq1d 3131 . . . . . 6  |-  ( x  =  (/)  ->  ( suc  x  C_  suc  B  <->  suc  (/)  C_  suc  B ) )
96, 8imbi12d 233 . . . . 5  |-  ( x  =  (/)  ->  ( ( x  C_  B  ->  suc  x  C_  suc  B )  <-> 
( (/)  C_  B  ->  suc  (/)  C_  suc  B ) ) )
10 sseq1 3125 . . . . . 6  |-  ( x  =  y  ->  (
x  C_  B  <->  y  C_  B ) )
11 suceq 4332 . . . . . . 7  |-  ( x  =  y  ->  suc  x  =  suc  y )
1211sseq1d 3131 . . . . . 6  |-  ( x  =  y  ->  ( suc  x  C_  suc  B  <->  suc  y  C_  suc  B ) )
1310, 12imbi12d 233 . . . . 5  |-  ( x  =  y  ->  (
( x  C_  B  ->  suc  x  C_  suc  B )  <->  ( y  C_  B  ->  suc  y  C_  suc  B ) ) )
14 sseq1 3125 . . . . . 6  |-  ( x  =  suc  y  -> 
( x  C_  B  <->  suc  y  C_  B )
)
15 suceq 4332 . . . . . . 7  |-  ( x  =  suc  y  ->  suc  x  =  suc  suc  y )
1615sseq1d 3131 . . . . . 6  |-  ( x  =  suc  y  -> 
( suc  x  C_  suc  B  <->  suc  suc  y  C_  suc  B ) )
1714, 16imbi12d 233 . . . . 5  |-  ( x  =  suc  y  -> 
( ( x  C_  B  ->  suc  x  C_  suc  B )  <->  ( suc  y  C_  B  ->  suc  suc  y  C_ 
suc  B ) ) )
18 peano3 4518 . . . . . . . . 9  |-  ( B  e.  om  ->  suc  B  =/=  (/) )
1918neneqd 2330 . . . . . . . 8  |-  ( B  e.  om  ->  -.  suc  B  =  (/) )
20 peano2 4517 . . . . . . . . . 10  |-  ( B  e.  om  ->  suc  B  e.  om )
21 0elnn 4540 . . . . . . . . . 10  |-  ( suc 
B  e.  om  ->  ( suc  B  =  (/)  \/  (/)  e.  suc  B ) )
2220, 21syl 14 . . . . . . . . 9  |-  ( B  e.  om  ->  ( suc  B  =  (/)  \/  (/)  e.  suc  B ) )
2322ord 714 . . . . . . . 8  |-  ( B  e.  om  ->  ( -.  suc  B  =  (/)  -> 
(/)  e.  suc  B ) )
2419, 23mpd 13 . . . . . . 7  |-  ( B  e.  om  ->  (/)  e.  suc  B )
25 nnord 4533 . . . . . . . 8  |-  ( B  e.  om  ->  Ord  B )
26 ordsucim 4424 . . . . . . . 8  |-  ( Ord 
B  ->  Ord  suc  B
)
27 0ex 4063 . . . . . . . . 9  |-  (/)  e.  _V
28 ordelsuc 4429 . . . . . . . . 9  |-  ( (
(/)  e.  _V  /\  Ord  suc 
B )  ->  ( (/) 
e.  suc  B  <->  suc  (/)  C_  suc  B ) )
2927, 28mpan 421 . . . . . . . 8  |-  ( Ord 
suc  B  ->  ( (/)  e.  suc  B  <->  suc  (/)  C_  suc  B ) )
3025, 26, 293syl 17 . . . . . . 7  |-  ( B  e.  om  ->  ( (/) 
e.  suc  B  <->  suc  (/)  C_  suc  B ) )
3124, 30mpbid 146 . . . . . 6  |-  ( B  e.  om  ->  suc  (/)  C_  suc  B )
3231a1d 22 . . . . 5  |-  ( B  e.  om  ->  ( (/)  C_  B  ->  suc  (/)  C_  suc  B ) )
33 simp3 984 . . . . . . . . . 10  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  suc  y  C_  B )
34 simp1l 1006 . . . . . . . . . . 11  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  y  e.  om )
35 simp1r 1007 . . . . . . . . . . . 12  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  B  e.  om )
3635, 25syl 14 . . . . . . . . . . 11  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  Ord  B )
37 ordelsuc 4429 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  Ord  B )  ->  (
y  e.  B  <->  suc  y  C_  B ) )
3834, 36, 37syl2anc 409 . . . . . . . . . 10  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  (
y  e.  B  <->  suc  y  C_  B ) )
3933, 38mpbird 166 . . . . . . . . 9  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  y  e.  B )
40 nnsucelsuc 6395 . . . . . . . . . 10  |-  ( B  e.  om  ->  (
y  e.  B  <->  suc  y  e. 
suc  B ) )
4135, 40syl 14 . . . . . . . . 9  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  (
y  e.  B  <->  suc  y  e. 
suc  B ) )
4239, 41mpbid 146 . . . . . . . 8  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  suc  y  e.  suc  B )
43 peano2 4517 . . . . . . . . . 10  |-  ( y  e.  om  ->  suc  y  e.  om )
4434, 43syl 14 . . . . . . . . 9  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  suc  y  e.  om )
4536, 26syl 14 . . . . . . . . 9  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  Ord  suc 
B )
46 ordelsuc 4429 . . . . . . . . 9  |-  ( ( suc  y  e.  om  /\ 
Ord  suc  B )  -> 
( suc  y  e.  suc  B  <->  suc  suc  y  C_  suc  B ) )
4744, 45, 46syl2anc 409 . . . . . . . 8  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  ( suc  y  e.  suc  B  <->  suc  suc  y  C_  suc  B ) )
4842, 47mpbid 146 . . . . . . 7  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  suc  suc  y  C_  suc  B )
49483expia 1184 . . . . . 6  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B ) )  ->  ( suc  y  C_  B  ->  suc  suc  y  C_  suc  B ) )
5049exp31 362 . . . . 5  |-  ( y  e.  om  ->  ( B  e.  om  ->  ( ( y  C_  B  ->  suc  y  C_  suc  B )  ->  ( suc  y  C_  B  ->  suc  suc  y  C_  suc  B ) ) ) )
519, 13, 17, 32, 50finds2 4523 . . . 4  |-  ( x  e.  om  ->  ( B  e.  om  ->  ( x  C_  B  ->  suc  x  C_  suc  B ) ) )
525, 51vtoclga 2755 . . 3  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( A  C_  B  ->  suc 
A  C_  suc  B ) ) )
5352imp 123 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  ->  suc  A  C_  suc  B ) )
54 nnon 4531 . . 3  |-  ( A  e.  om  ->  A  e.  On )
55 onsucsssucr 4433 . . 3  |-  ( ( A  e.  On  /\  Ord  B )  ->  ( suc  A  C_  suc  B  ->  A  C_  B ) )
5654, 25, 55syl2an 287 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  C_  suc  B  ->  A  C_  B
) )
5753, 56impbid 128 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  suc 
A  C_  suc  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    = wceq 1332    e. wcel 1481   _Vcvv 2689    C_ wss 3076   (/)c0 3368   Ord word 4292   Oncon0 4293   suc csuc 4295   omcom 4512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-uni 3745  df-int 3780  df-tr 4035  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513
This theorem is referenced by:  nnaword  6415  ennnfonelemk  11949  ennnfonelemkh  11961
  Copyright terms: Public domain W3C validator