| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnsucsssuc | Unicode version | ||
| Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucsssucr 4558, but the forward direction, for all ordinals, implies excluded middle as seen as onsucsssucexmid 4576. (Contributed by Jim Kingdon, 25-Aug-2019.) |
| Ref | Expression |
|---|---|
| nnsucsssuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3216 |
. . . . . 6
| |
| 2 | suceq 4450 |
. . . . . . 7
| |
| 3 | 2 | sseq1d 3222 |
. . . . . 6
|
| 4 | 1, 3 | imbi12d 234 |
. . . . 5
|
| 5 | 4 | imbi2d 230 |
. . . 4
|
| 6 | sseq1 3216 |
. . . . . 6
| |
| 7 | suceq 4450 |
. . . . . . 7
| |
| 8 | 7 | sseq1d 3222 |
. . . . . 6
|
| 9 | 6, 8 | imbi12d 234 |
. . . . 5
|
| 10 | sseq1 3216 |
. . . . . 6
| |
| 11 | suceq 4450 |
. . . . . . 7
| |
| 12 | 11 | sseq1d 3222 |
. . . . . 6
|
| 13 | 10, 12 | imbi12d 234 |
. . . . 5
|
| 14 | sseq1 3216 |
. . . . . 6
| |
| 15 | suceq 4450 |
. . . . . . 7
| |
| 16 | 15 | sseq1d 3222 |
. . . . . 6
|
| 17 | 14, 16 | imbi12d 234 |
. . . . 5
|
| 18 | peano3 4645 |
. . . . . . . . 9
| |
| 19 | 18 | neneqd 2397 |
. . . . . . . 8
|
| 20 | peano2 4644 |
. . . . . . . . . 10
| |
| 21 | 0elnn 4668 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | syl 14 |
. . . . . . . . 9
|
| 23 | 22 | ord 726 |
. . . . . . . 8
|
| 24 | 19, 23 | mpd 13 |
. . . . . . 7
|
| 25 | nnord 4661 |
. . . . . . . 8
| |
| 26 | ordsucim 4549 |
. . . . . . . 8
| |
| 27 | 0ex 4172 |
. . . . . . . . 9
| |
| 28 | ordelsuc 4554 |
. . . . . . . . 9
| |
| 29 | 27, 28 | mpan 424 |
. . . . . . . 8
|
| 30 | 25, 26, 29 | 3syl 17 |
. . . . . . 7
|
| 31 | 24, 30 | mpbid 147 |
. . . . . 6
|
| 32 | 31 | a1d 22 |
. . . . 5
|
| 33 | simp3 1002 |
. . . . . . . . . 10
| |
| 34 | simp1l 1024 |
. . . . . . . . . . 11
| |
| 35 | simp1r 1025 |
. . . . . . . . . . . 12
| |
| 36 | 35, 25 | syl 14 |
. . . . . . . . . . 11
|
| 37 | ordelsuc 4554 |
. . . . . . . . . . 11
| |
| 38 | 34, 36, 37 | syl2anc 411 |
. . . . . . . . . 10
|
| 39 | 33, 38 | mpbird 167 |
. . . . . . . . 9
|
| 40 | nnsucelsuc 6579 |
. . . . . . . . . 10
| |
| 41 | 35, 40 | syl 14 |
. . . . . . . . 9
|
| 42 | 39, 41 | mpbid 147 |
. . . . . . . 8
|
| 43 | peano2 4644 |
. . . . . . . . . 10
| |
| 44 | 34, 43 | syl 14 |
. . . . . . . . 9
|
| 45 | 36, 26 | syl 14 |
. . . . . . . . 9
|
| 46 | ordelsuc 4554 |
. . . . . . . . 9
| |
| 47 | 44, 45, 46 | syl2anc 411 |
. . . . . . . 8
|
| 48 | 42, 47 | mpbid 147 |
. . . . . . 7
|
| 49 | 48 | 3expia 1208 |
. . . . . 6
|
| 50 | 49 | exp31 364 |
. . . . 5
|
| 51 | 9, 13, 17, 32, 50 | finds2 4650 |
. . . 4
|
| 52 | 5, 51 | vtoclga 2839 |
. . 3
|
| 53 | 52 | imp 124 |
. 2
|
| 54 | nnon 4659 |
. . 3
| |
| 55 | onsucsssucr 4558 |
. . 3
| |
| 56 | 54, 25, 55 | syl2an 289 |
. 2
|
| 57 | 53, 56 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-tr 4144 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 |
| This theorem is referenced by: nnaword 6599 ennnfonelemk 12804 ennnfonelemkh 12816 |
| Copyright terms: Public domain | W3C validator |