| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnsucsssuc | Unicode version | ||
| Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucsssucr 4575, but the forward direction, for all ordinals, implies excluded middle as seen as onsucsssucexmid 4593. (Contributed by Jim Kingdon, 25-Aug-2019.) |
| Ref | Expression |
|---|---|
| nnsucsssuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3224 |
. . . . . 6
| |
| 2 | suceq 4467 |
. . . . . . 7
| |
| 3 | 2 | sseq1d 3230 |
. . . . . 6
|
| 4 | 1, 3 | imbi12d 234 |
. . . . 5
|
| 5 | 4 | imbi2d 230 |
. . . 4
|
| 6 | sseq1 3224 |
. . . . . 6
| |
| 7 | suceq 4467 |
. . . . . . 7
| |
| 8 | 7 | sseq1d 3230 |
. . . . . 6
|
| 9 | 6, 8 | imbi12d 234 |
. . . . 5
|
| 10 | sseq1 3224 |
. . . . . 6
| |
| 11 | suceq 4467 |
. . . . . . 7
| |
| 12 | 11 | sseq1d 3230 |
. . . . . 6
|
| 13 | 10, 12 | imbi12d 234 |
. . . . 5
|
| 14 | sseq1 3224 |
. . . . . 6
| |
| 15 | suceq 4467 |
. . . . . . 7
| |
| 16 | 15 | sseq1d 3230 |
. . . . . 6
|
| 17 | 14, 16 | imbi12d 234 |
. . . . 5
|
| 18 | peano3 4662 |
. . . . . . . . 9
| |
| 19 | 18 | neneqd 2399 |
. . . . . . . 8
|
| 20 | peano2 4661 |
. . . . . . . . . 10
| |
| 21 | 0elnn 4685 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | syl 14 |
. . . . . . . . 9
|
| 23 | 22 | ord 726 |
. . . . . . . 8
|
| 24 | 19, 23 | mpd 13 |
. . . . . . 7
|
| 25 | nnord 4678 |
. . . . . . . 8
| |
| 26 | ordsucim 4566 |
. . . . . . . 8
| |
| 27 | 0ex 4187 |
. . . . . . . . 9
| |
| 28 | ordelsuc 4571 |
. . . . . . . . 9
| |
| 29 | 27, 28 | mpan 424 |
. . . . . . . 8
|
| 30 | 25, 26, 29 | 3syl 17 |
. . . . . . 7
|
| 31 | 24, 30 | mpbid 147 |
. . . . . 6
|
| 32 | 31 | a1d 22 |
. . . . 5
|
| 33 | simp3 1002 |
. . . . . . . . . 10
| |
| 34 | simp1l 1024 |
. . . . . . . . . . 11
| |
| 35 | simp1r 1025 |
. . . . . . . . . . . 12
| |
| 36 | 35, 25 | syl 14 |
. . . . . . . . . . 11
|
| 37 | ordelsuc 4571 |
. . . . . . . . . . 11
| |
| 38 | 34, 36, 37 | syl2anc 411 |
. . . . . . . . . 10
|
| 39 | 33, 38 | mpbird 167 |
. . . . . . . . 9
|
| 40 | nnsucelsuc 6600 |
. . . . . . . . . 10
| |
| 41 | 35, 40 | syl 14 |
. . . . . . . . 9
|
| 42 | 39, 41 | mpbid 147 |
. . . . . . . 8
|
| 43 | peano2 4661 |
. . . . . . . . . 10
| |
| 44 | 34, 43 | syl 14 |
. . . . . . . . 9
|
| 45 | 36, 26 | syl 14 |
. . . . . . . . 9
|
| 46 | ordelsuc 4571 |
. . . . . . . . 9
| |
| 47 | 44, 45, 46 | syl2anc 411 |
. . . . . . . 8
|
| 48 | 42, 47 | mpbid 147 |
. . . . . . 7
|
| 49 | 48 | 3expia 1208 |
. . . . . 6
|
| 50 | 49 | exp31 364 |
. . . . 5
|
| 51 | 9, 13, 17, 32, 50 | finds2 4667 |
. . . 4
|
| 52 | 5, 51 | vtoclga 2844 |
. . 3
|
| 53 | 52 | imp 124 |
. 2
|
| 54 | nnon 4676 |
. . 3
| |
| 55 | onsucsssucr 4575 |
. . 3
| |
| 56 | 54, 25, 55 | syl2an 289 |
. 2
|
| 57 | 53, 56 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 |
| This theorem is referenced by: nnaword 6620 ennnfonelemk 12886 ennnfonelemkh 12898 |
| Copyright terms: Public domain | W3C validator |