Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnsucsssuc | Unicode version |
Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucsssucr 4486, but the forward direction, for all ordinals, implies excluded middle as seen as onsucsssucexmid 4504. (Contributed by Jim Kingdon, 25-Aug-2019.) |
Ref | Expression |
---|---|
nnsucsssuc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3165 | . . . . . 6 | |
2 | suceq 4380 | . . . . . . 7 | |
3 | 2 | sseq1d 3171 | . . . . . 6 |
4 | 1, 3 | imbi12d 233 | . . . . 5 |
5 | 4 | imbi2d 229 | . . . 4 |
6 | sseq1 3165 | . . . . . 6 | |
7 | suceq 4380 | . . . . . . 7 | |
8 | 7 | sseq1d 3171 | . . . . . 6 |
9 | 6, 8 | imbi12d 233 | . . . . 5 |
10 | sseq1 3165 | . . . . . 6 | |
11 | suceq 4380 | . . . . . . 7 | |
12 | 11 | sseq1d 3171 | . . . . . 6 |
13 | 10, 12 | imbi12d 233 | . . . . 5 |
14 | sseq1 3165 | . . . . . 6 | |
15 | suceq 4380 | . . . . . . 7 | |
16 | 15 | sseq1d 3171 | . . . . . 6 |
17 | 14, 16 | imbi12d 233 | . . . . 5 |
18 | peano3 4573 | . . . . . . . . 9 | |
19 | 18 | neneqd 2357 | . . . . . . . 8 |
20 | peano2 4572 | . . . . . . . . . 10 | |
21 | 0elnn 4596 | . . . . . . . . . 10 | |
22 | 20, 21 | syl 14 | . . . . . . . . 9 |
23 | 22 | ord 714 | . . . . . . . 8 |
24 | 19, 23 | mpd 13 | . . . . . . 7 |
25 | nnord 4589 | . . . . . . . 8 | |
26 | ordsucim 4477 | . . . . . . . 8 | |
27 | 0ex 4109 | . . . . . . . . 9 | |
28 | ordelsuc 4482 | . . . . . . . . 9 | |
29 | 27, 28 | mpan 421 | . . . . . . . 8 |
30 | 25, 26, 29 | 3syl 17 | . . . . . . 7 |
31 | 24, 30 | mpbid 146 | . . . . . 6 |
32 | 31 | a1d 22 | . . . . 5 |
33 | simp3 989 | . . . . . . . . . 10 | |
34 | simp1l 1011 | . . . . . . . . . . 11 | |
35 | simp1r 1012 | . . . . . . . . . . . 12 | |
36 | 35, 25 | syl 14 | . . . . . . . . . . 11 |
37 | ordelsuc 4482 | . . . . . . . . . . 11 | |
38 | 34, 36, 37 | syl2anc 409 | . . . . . . . . . 10 |
39 | 33, 38 | mpbird 166 | . . . . . . . . 9 |
40 | nnsucelsuc 6459 | . . . . . . . . . 10 | |
41 | 35, 40 | syl 14 | . . . . . . . . 9 |
42 | 39, 41 | mpbid 146 | . . . . . . . 8 |
43 | peano2 4572 | . . . . . . . . . 10 | |
44 | 34, 43 | syl 14 | . . . . . . . . 9 |
45 | 36, 26 | syl 14 | . . . . . . . . 9 |
46 | ordelsuc 4482 | . . . . . . . . 9 | |
47 | 44, 45, 46 | syl2anc 409 | . . . . . . . 8 |
48 | 42, 47 | mpbid 146 | . . . . . . 7 |
49 | 48 | 3expia 1195 | . . . . . 6 |
50 | 49 | exp31 362 | . . . . 5 |
51 | 9, 13, 17, 32, 50 | finds2 4578 | . . . 4 |
52 | 5, 51 | vtoclga 2792 | . . 3 |
53 | 52 | imp 123 | . 2 |
54 | nnon 4587 | . . 3 | |
55 | onsucsssucr 4486 | . . 3 | |
56 | 54, 25, 55 | syl2an 287 | . 2 |
57 | 53, 56 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 968 wceq 1343 wcel 2136 cvv 2726 wss 3116 c0 3409 word 4340 con0 4341 csuc 4343 com 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 |
This theorem is referenced by: nnaword 6479 ennnfonelemk 12333 ennnfonelemkh 12345 |
Copyright terms: Public domain | W3C validator |