Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnsucsssuc | Unicode version |
Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucsssucr 4491, but the forward direction, for all ordinals, implies excluded middle as seen as onsucsssucexmid 4509. (Contributed by Jim Kingdon, 25-Aug-2019.) |
Ref | Expression |
---|---|
nnsucsssuc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3170 | . . . . . 6 | |
2 | suceq 4385 | . . . . . . 7 | |
3 | 2 | sseq1d 3176 | . . . . . 6 |
4 | 1, 3 | imbi12d 233 | . . . . 5 |
5 | 4 | imbi2d 229 | . . . 4 |
6 | sseq1 3170 | . . . . . 6 | |
7 | suceq 4385 | . . . . . . 7 | |
8 | 7 | sseq1d 3176 | . . . . . 6 |
9 | 6, 8 | imbi12d 233 | . . . . 5 |
10 | sseq1 3170 | . . . . . 6 | |
11 | suceq 4385 | . . . . . . 7 | |
12 | 11 | sseq1d 3176 | . . . . . 6 |
13 | 10, 12 | imbi12d 233 | . . . . 5 |
14 | sseq1 3170 | . . . . . 6 | |
15 | suceq 4385 | . . . . . . 7 | |
16 | 15 | sseq1d 3176 | . . . . . 6 |
17 | 14, 16 | imbi12d 233 | . . . . 5 |
18 | peano3 4578 | . . . . . . . . 9 | |
19 | 18 | neneqd 2361 | . . . . . . . 8 |
20 | peano2 4577 | . . . . . . . . . 10 | |
21 | 0elnn 4601 | . . . . . . . . . 10 | |
22 | 20, 21 | syl 14 | . . . . . . . . 9 |
23 | 22 | ord 719 | . . . . . . . 8 |
24 | 19, 23 | mpd 13 | . . . . . . 7 |
25 | nnord 4594 | . . . . . . . 8 | |
26 | ordsucim 4482 | . . . . . . . 8 | |
27 | 0ex 4114 | . . . . . . . . 9 | |
28 | ordelsuc 4487 | . . . . . . . . 9 | |
29 | 27, 28 | mpan 422 | . . . . . . . 8 |
30 | 25, 26, 29 | 3syl 17 | . . . . . . 7 |
31 | 24, 30 | mpbid 146 | . . . . . 6 |
32 | 31 | a1d 22 | . . . . 5 |
33 | simp3 994 | . . . . . . . . . 10 | |
34 | simp1l 1016 | . . . . . . . . . . 11 | |
35 | simp1r 1017 | . . . . . . . . . . . 12 | |
36 | 35, 25 | syl 14 | . . . . . . . . . . 11 |
37 | ordelsuc 4487 | . . . . . . . . . . 11 | |
38 | 34, 36, 37 | syl2anc 409 | . . . . . . . . . 10 |
39 | 33, 38 | mpbird 166 | . . . . . . . . 9 |
40 | nnsucelsuc 6468 | . . . . . . . . . 10 | |
41 | 35, 40 | syl 14 | . . . . . . . . 9 |
42 | 39, 41 | mpbid 146 | . . . . . . . 8 |
43 | peano2 4577 | . . . . . . . . . 10 | |
44 | 34, 43 | syl 14 | . . . . . . . . 9 |
45 | 36, 26 | syl 14 | . . . . . . . . 9 |
46 | ordelsuc 4487 | . . . . . . . . 9 | |
47 | 44, 45, 46 | syl2anc 409 | . . . . . . . 8 |
48 | 42, 47 | mpbid 146 | . . . . . . 7 |
49 | 48 | 3expia 1200 | . . . . . 6 |
50 | 49 | exp31 362 | . . . . 5 |
51 | 9, 13, 17, 32, 50 | finds2 4583 | . . . 4 |
52 | 5, 51 | vtoclga 2796 | . . 3 |
53 | 52 | imp 123 | . 2 |
54 | nnon 4592 | . . 3 | |
55 | onsucsssucr 4491 | . . 3 | |
56 | 54, 25, 55 | syl2an 287 | . 2 |
57 | 53, 56 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 w3a 973 wceq 1348 wcel 2141 cvv 2730 wss 3121 c0 3414 word 4345 con0 4346 csuc 4348 com 4572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-uni 3795 df-int 3830 df-tr 4086 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 |
This theorem is referenced by: nnaword 6488 ennnfonelemk 12348 ennnfonelemkh 12360 |
Copyright terms: Public domain | W3C validator |