| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nnsucsssuc | Unicode version | ||
| Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucsssucr 4545, but the forward direction, for all ordinals, implies excluded middle as seen as onsucsssucexmid 4563. (Contributed by Jim Kingdon, 25-Aug-2019.) | 
| Ref | Expression | 
|---|---|
| nnsucsssuc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sseq1 3206 | 
. . . . . 6
 | |
| 2 | suceq 4437 | 
. . . . . . 7
 | |
| 3 | 2 | sseq1d 3212 | 
. . . . . 6
 | 
| 4 | 1, 3 | imbi12d 234 | 
. . . . 5
 | 
| 5 | 4 | imbi2d 230 | 
. . . 4
 | 
| 6 | sseq1 3206 | 
. . . . . 6
 | |
| 7 | suceq 4437 | 
. . . . . . 7
 | |
| 8 | 7 | sseq1d 3212 | 
. . . . . 6
 | 
| 9 | 6, 8 | imbi12d 234 | 
. . . . 5
 | 
| 10 | sseq1 3206 | 
. . . . . 6
 | |
| 11 | suceq 4437 | 
. . . . . . 7
 | |
| 12 | 11 | sseq1d 3212 | 
. . . . . 6
 | 
| 13 | 10, 12 | imbi12d 234 | 
. . . . 5
 | 
| 14 | sseq1 3206 | 
. . . . . 6
 | |
| 15 | suceq 4437 | 
. . . . . . 7
 | |
| 16 | 15 | sseq1d 3212 | 
. . . . . 6
 | 
| 17 | 14, 16 | imbi12d 234 | 
. . . . 5
 | 
| 18 | peano3 4632 | 
. . . . . . . . 9
 | |
| 19 | 18 | neneqd 2388 | 
. . . . . . . 8
 | 
| 20 | peano2 4631 | 
. . . . . . . . . 10
 | |
| 21 | 0elnn 4655 | 
. . . . . . . . . 10
 | |
| 22 | 20, 21 | syl 14 | 
. . . . . . . . 9
 | 
| 23 | 22 | ord 725 | 
. . . . . . . 8
 | 
| 24 | 19, 23 | mpd 13 | 
. . . . . . 7
 | 
| 25 | nnord 4648 | 
. . . . . . . 8
 | |
| 26 | ordsucim 4536 | 
. . . . . . . 8
 | |
| 27 | 0ex 4160 | 
. . . . . . . . 9
 | |
| 28 | ordelsuc 4541 | 
. . . . . . . . 9
 | |
| 29 | 27, 28 | mpan 424 | 
. . . . . . . 8
 | 
| 30 | 25, 26, 29 | 3syl 17 | 
. . . . . . 7
 | 
| 31 | 24, 30 | mpbid 147 | 
. . . . . 6
 | 
| 32 | 31 | a1d 22 | 
. . . . 5
 | 
| 33 | simp3 1001 | 
. . . . . . . . . 10
 | |
| 34 | simp1l 1023 | 
. . . . . . . . . . 11
 | |
| 35 | simp1r 1024 | 
. . . . . . . . . . . 12
 | |
| 36 | 35, 25 | syl 14 | 
. . . . . . . . . . 11
 | 
| 37 | ordelsuc 4541 | 
. . . . . . . . . . 11
 | |
| 38 | 34, 36, 37 | syl2anc 411 | 
. . . . . . . . . 10
 | 
| 39 | 33, 38 | mpbird 167 | 
. . . . . . . . 9
 | 
| 40 | nnsucelsuc 6549 | 
. . . . . . . . . 10
 | |
| 41 | 35, 40 | syl 14 | 
. . . . . . . . 9
 | 
| 42 | 39, 41 | mpbid 147 | 
. . . . . . . 8
 | 
| 43 | peano2 4631 | 
. . . . . . . . . 10
 | |
| 44 | 34, 43 | syl 14 | 
. . . . . . . . 9
 | 
| 45 | 36, 26 | syl 14 | 
. . . . . . . . 9
 | 
| 46 | ordelsuc 4541 | 
. . . . . . . . 9
 | |
| 47 | 44, 45, 46 | syl2anc 411 | 
. . . . . . . 8
 | 
| 48 | 42, 47 | mpbid 147 | 
. . . . . . 7
 | 
| 49 | 48 | 3expia 1207 | 
. . . . . 6
 | 
| 50 | 49 | exp31 364 | 
. . . . 5
 | 
| 51 | 9, 13, 17, 32, 50 | finds2 4637 | 
. . . 4
 | 
| 52 | 5, 51 | vtoclga 2830 | 
. . 3
 | 
| 53 | 52 | imp 124 | 
. 2
 | 
| 54 | nnon 4646 | 
. . 3
 | |
| 55 | onsucsssucr 4545 | 
. . 3
 | |
| 56 | 54, 25, 55 | syl2an 289 | 
. 2
 | 
| 57 | 53, 56 | impbid 129 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 | 
| This theorem is referenced by: nnaword 6569 ennnfonelemk 12617 ennnfonelemkh 12629 | 
| Copyright terms: Public domain | W3C validator |