ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsucsssuc Unicode version

Theorem nnsucsssuc 6469
Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucsssucr 4491, but the forward direction, for all ordinals, implies excluded middle as seen as onsucsssucexmid 4509. (Contributed by Jim Kingdon, 25-Aug-2019.)
Assertion
Ref Expression
nnsucsssuc  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  suc 
A  C_  suc  B ) )

Proof of Theorem nnsucsssuc
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3170 . . . . . 6  |-  ( x  =  A  ->  (
x  C_  B  <->  A  C_  B
) )
2 suceq 4385 . . . . . . 7  |-  ( x  =  A  ->  suc  x  =  suc  A )
32sseq1d 3176 . . . . . 6  |-  ( x  =  A  ->  ( suc  x  C_  suc  B  <->  suc  A  C_  suc  B ) )
41, 3imbi12d 233 . . . . 5  |-  ( x  =  A  ->  (
( x  C_  B  ->  suc  x  C_  suc  B )  <->  ( A  C_  B  ->  suc  A  C_  suc  B ) ) )
54imbi2d 229 . . . 4  |-  ( x  =  A  ->  (
( B  e.  om  ->  ( x  C_  B  ->  suc  x  C_  suc  B ) )  <->  ( B  e.  om  ->  ( A  C_  B  ->  suc  A  C_  suc  B ) ) ) )
6 sseq1 3170 . . . . . 6  |-  ( x  =  (/)  ->  ( x 
C_  B  <->  (/)  C_  B
) )
7 suceq 4385 . . . . . . 7  |-  ( x  =  (/)  ->  suc  x  =  suc  (/) )
87sseq1d 3176 . . . . . 6  |-  ( x  =  (/)  ->  ( suc  x  C_  suc  B  <->  suc  (/)  C_  suc  B ) )
96, 8imbi12d 233 . . . . 5  |-  ( x  =  (/)  ->  ( ( x  C_  B  ->  suc  x  C_  suc  B )  <-> 
( (/)  C_  B  ->  suc  (/)  C_  suc  B ) ) )
10 sseq1 3170 . . . . . 6  |-  ( x  =  y  ->  (
x  C_  B  <->  y  C_  B ) )
11 suceq 4385 . . . . . . 7  |-  ( x  =  y  ->  suc  x  =  suc  y )
1211sseq1d 3176 . . . . . 6  |-  ( x  =  y  ->  ( suc  x  C_  suc  B  <->  suc  y  C_  suc  B ) )
1310, 12imbi12d 233 . . . . 5  |-  ( x  =  y  ->  (
( x  C_  B  ->  suc  x  C_  suc  B )  <->  ( y  C_  B  ->  suc  y  C_  suc  B ) ) )
14 sseq1 3170 . . . . . 6  |-  ( x  =  suc  y  -> 
( x  C_  B  <->  suc  y  C_  B )
)
15 suceq 4385 . . . . . . 7  |-  ( x  =  suc  y  ->  suc  x  =  suc  suc  y )
1615sseq1d 3176 . . . . . 6  |-  ( x  =  suc  y  -> 
( suc  x  C_  suc  B  <->  suc  suc  y  C_  suc  B ) )
1714, 16imbi12d 233 . . . . 5  |-  ( x  =  suc  y  -> 
( ( x  C_  B  ->  suc  x  C_  suc  B )  <->  ( suc  y  C_  B  ->  suc  suc  y  C_ 
suc  B ) ) )
18 peano3 4578 . . . . . . . . 9  |-  ( B  e.  om  ->  suc  B  =/=  (/) )
1918neneqd 2361 . . . . . . . 8  |-  ( B  e.  om  ->  -.  suc  B  =  (/) )
20 peano2 4577 . . . . . . . . . 10  |-  ( B  e.  om  ->  suc  B  e.  om )
21 0elnn 4601 . . . . . . . . . 10  |-  ( suc 
B  e.  om  ->  ( suc  B  =  (/)  \/  (/)  e.  suc  B ) )
2220, 21syl 14 . . . . . . . . 9  |-  ( B  e.  om  ->  ( suc  B  =  (/)  \/  (/)  e.  suc  B ) )
2322ord 719 . . . . . . . 8  |-  ( B  e.  om  ->  ( -.  suc  B  =  (/)  -> 
(/)  e.  suc  B ) )
2419, 23mpd 13 . . . . . . 7  |-  ( B  e.  om  ->  (/)  e.  suc  B )
25 nnord 4594 . . . . . . . 8  |-  ( B  e.  om  ->  Ord  B )
26 ordsucim 4482 . . . . . . . 8  |-  ( Ord 
B  ->  Ord  suc  B
)
27 0ex 4114 . . . . . . . . 9  |-  (/)  e.  _V
28 ordelsuc 4487 . . . . . . . . 9  |-  ( (
(/)  e.  _V  /\  Ord  suc 
B )  ->  ( (/) 
e.  suc  B  <->  suc  (/)  C_  suc  B ) )
2927, 28mpan 422 . . . . . . . 8  |-  ( Ord 
suc  B  ->  ( (/)  e.  suc  B  <->  suc  (/)  C_  suc  B ) )
3025, 26, 293syl 17 . . . . . . 7  |-  ( B  e.  om  ->  ( (/) 
e.  suc  B  <->  suc  (/)  C_  suc  B ) )
3124, 30mpbid 146 . . . . . 6  |-  ( B  e.  om  ->  suc  (/)  C_  suc  B )
3231a1d 22 . . . . 5  |-  ( B  e.  om  ->  ( (/)  C_  B  ->  suc  (/)  C_  suc  B ) )
33 simp3 994 . . . . . . . . . 10  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  suc  y  C_  B )
34 simp1l 1016 . . . . . . . . . . 11  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  y  e.  om )
35 simp1r 1017 . . . . . . . . . . . 12  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  B  e.  om )
3635, 25syl 14 . . . . . . . . . . 11  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  Ord  B )
37 ordelsuc 4487 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  Ord  B )  ->  (
y  e.  B  <->  suc  y  C_  B ) )
3834, 36, 37syl2anc 409 . . . . . . . . . 10  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  (
y  e.  B  <->  suc  y  C_  B ) )
3933, 38mpbird 166 . . . . . . . . 9  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  y  e.  B )
40 nnsucelsuc 6468 . . . . . . . . . 10  |-  ( B  e.  om  ->  (
y  e.  B  <->  suc  y  e. 
suc  B ) )
4135, 40syl 14 . . . . . . . . 9  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  (
y  e.  B  <->  suc  y  e. 
suc  B ) )
4239, 41mpbid 146 . . . . . . . 8  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  suc  y  e.  suc  B )
43 peano2 4577 . . . . . . . . . 10  |-  ( y  e.  om  ->  suc  y  e.  om )
4434, 43syl 14 . . . . . . . . 9  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  suc  y  e.  om )
4536, 26syl 14 . . . . . . . . 9  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  Ord  suc 
B )
46 ordelsuc 4487 . . . . . . . . 9  |-  ( ( suc  y  e.  om  /\ 
Ord  suc  B )  -> 
( suc  y  e.  suc  B  <->  suc  suc  y  C_  suc  B ) )
4744, 45, 46syl2anc 409 . . . . . . . 8  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  ( suc  y  e.  suc  B  <->  suc  suc  y  C_  suc  B ) )
4842, 47mpbid 146 . . . . . . 7  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B )  /\  suc  y  C_  B )  ->  suc  suc  y  C_  suc  B )
49483expia 1200 . . . . . 6  |-  ( ( ( y  e.  om  /\  B  e.  om )  /\  ( y  C_  B  ->  suc  y  C_  suc  B ) )  ->  ( suc  y  C_  B  ->  suc  suc  y  C_  suc  B ) )
5049exp31 362 . . . . 5  |-  ( y  e.  om  ->  ( B  e.  om  ->  ( ( y  C_  B  ->  suc  y  C_  suc  B )  ->  ( suc  y  C_  B  ->  suc  suc  y  C_  suc  B ) ) ) )
519, 13, 17, 32, 50finds2 4583 . . . 4  |-  ( x  e.  om  ->  ( B  e.  om  ->  ( x  C_  B  ->  suc  x  C_  suc  B ) ) )
525, 51vtoclga 2796 . . 3  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( A  C_  B  ->  suc 
A  C_  suc  B ) ) )
5352imp 123 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  ->  suc  A  C_  suc  B ) )
54 nnon 4592 . . 3  |-  ( A  e.  om  ->  A  e.  On )
55 onsucsssucr 4491 . . 3  |-  ( ( A  e.  On  /\  Ord  B )  ->  ( suc  A  C_  suc  B  ->  A  C_  B ) )
5654, 25, 55syl2an 287 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  C_  suc  B  ->  A  C_  B
) )
5753, 56impbid 128 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  suc 
A  C_  suc  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141   _Vcvv 2730    C_ wss 3121   (/)c0 3414   Ord word 4345   Oncon0 4346   suc csuc 4348   omcom 4572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-uni 3795  df-int 3830  df-tr 4086  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573
This theorem is referenced by:  nnaword  6488  ennnfonelemk  12348  ennnfonelemkh  12360
  Copyright terms: Public domain W3C validator