| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnsucsssuc | Unicode version | ||
| Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucsssucr 4601, but the forward direction, for all ordinals, implies excluded middle as seen as onsucsssucexmid 4619. (Contributed by Jim Kingdon, 25-Aug-2019.) |
| Ref | Expression |
|---|---|
| nnsucsssuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3247 |
. . . . . 6
| |
| 2 | suceq 4493 |
. . . . . . 7
| |
| 3 | 2 | sseq1d 3253 |
. . . . . 6
|
| 4 | 1, 3 | imbi12d 234 |
. . . . 5
|
| 5 | 4 | imbi2d 230 |
. . . 4
|
| 6 | sseq1 3247 |
. . . . . 6
| |
| 7 | suceq 4493 |
. . . . . . 7
| |
| 8 | 7 | sseq1d 3253 |
. . . . . 6
|
| 9 | 6, 8 | imbi12d 234 |
. . . . 5
|
| 10 | sseq1 3247 |
. . . . . 6
| |
| 11 | suceq 4493 |
. . . . . . 7
| |
| 12 | 11 | sseq1d 3253 |
. . . . . 6
|
| 13 | 10, 12 | imbi12d 234 |
. . . . 5
|
| 14 | sseq1 3247 |
. . . . . 6
| |
| 15 | suceq 4493 |
. . . . . . 7
| |
| 16 | 15 | sseq1d 3253 |
. . . . . 6
|
| 17 | 14, 16 | imbi12d 234 |
. . . . 5
|
| 18 | peano3 4688 |
. . . . . . . . 9
| |
| 19 | 18 | neneqd 2421 |
. . . . . . . 8
|
| 20 | peano2 4687 |
. . . . . . . . . 10
| |
| 21 | 0elnn 4711 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | syl 14 |
. . . . . . . . 9
|
| 23 | 22 | ord 729 |
. . . . . . . 8
|
| 24 | 19, 23 | mpd 13 |
. . . . . . 7
|
| 25 | nnord 4704 |
. . . . . . . 8
| |
| 26 | ordsucim 4592 |
. . . . . . . 8
| |
| 27 | 0ex 4211 |
. . . . . . . . 9
| |
| 28 | ordelsuc 4597 |
. . . . . . . . 9
| |
| 29 | 27, 28 | mpan 424 |
. . . . . . . 8
|
| 30 | 25, 26, 29 | 3syl 17 |
. . . . . . 7
|
| 31 | 24, 30 | mpbid 147 |
. . . . . 6
|
| 32 | 31 | a1d 22 |
. . . . 5
|
| 33 | simp3 1023 |
. . . . . . . . . 10
| |
| 34 | simp1l 1045 |
. . . . . . . . . . 11
| |
| 35 | simp1r 1046 |
. . . . . . . . . . . 12
| |
| 36 | 35, 25 | syl 14 |
. . . . . . . . . . 11
|
| 37 | ordelsuc 4597 |
. . . . . . . . . . 11
| |
| 38 | 34, 36, 37 | syl2anc 411 |
. . . . . . . . . 10
|
| 39 | 33, 38 | mpbird 167 |
. . . . . . . . 9
|
| 40 | nnsucelsuc 6637 |
. . . . . . . . . 10
| |
| 41 | 35, 40 | syl 14 |
. . . . . . . . 9
|
| 42 | 39, 41 | mpbid 147 |
. . . . . . . 8
|
| 43 | peano2 4687 |
. . . . . . . . . 10
| |
| 44 | 34, 43 | syl 14 |
. . . . . . . . 9
|
| 45 | 36, 26 | syl 14 |
. . . . . . . . 9
|
| 46 | ordelsuc 4597 |
. . . . . . . . 9
| |
| 47 | 44, 45, 46 | syl2anc 411 |
. . . . . . . 8
|
| 48 | 42, 47 | mpbid 147 |
. . . . . . 7
|
| 49 | 48 | 3expia 1229 |
. . . . . 6
|
| 50 | 49 | exp31 364 |
. . . . 5
|
| 51 | 9, 13, 17, 32, 50 | finds2 4693 |
. . . 4
|
| 52 | 5, 51 | vtoclga 2867 |
. . 3
|
| 53 | 52 | imp 124 |
. 2
|
| 54 | nnon 4702 |
. . 3
| |
| 55 | onsucsssucr 4601 |
. . 3
| |
| 56 | 54, 25, 55 | syl2an 289 |
. 2
|
| 57 | 53, 56 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 |
| This theorem is referenced by: nnaword 6657 ennnfonelemk 12971 ennnfonelemkh 12983 |
| Copyright terms: Public domain | W3C validator |