Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onsucelsucr | Unicode version |
Description: Membership is inherited by predecessors. The converse, for all ordinals, implies excluded middle, as shown at onsucelsucexmid 4514. However, the converse does hold where is a natural number, as seen at nnsucelsuc 6470. (Contributed by Jim Kingdon, 17-Jul-2019.) |
Ref | Expression |
---|---|
onsucelsucr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . . . 4 | |
2 | sucexb 4481 | . . . 4 | |
3 | 1, 2 | sylibr 133 | . . 3 |
4 | onelss 4372 | . . . . . . 7 | |
5 | eqimss 3201 | . . . . . . . 8 | |
6 | 5 | a1i 9 | . . . . . . 7 |
7 | 4, 6 | jaod 712 | . . . . . 6 |
8 | 7 | adantl 275 | . . . . 5 |
9 | elsucg 4389 | . . . . . . 7 | |
10 | 2, 9 | sylbi 120 | . . . . . 6 |
11 | 10 | adantr 274 | . . . . 5 |
12 | eloni 4360 | . . . . . 6 | |
13 | ordelsuc 4489 | . . . . . 6 | |
14 | 12, 13 | sylan2 284 | . . . . 5 |
15 | 8, 11, 14 | 3imtr4d 202 | . . . 4 |
16 | 15 | impancom 258 | . . 3 |
17 | 3, 16 | mpancom 420 | . 2 |
18 | 17 | com12 30 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 wceq 1348 wcel 2141 cvv 2730 wss 3121 word 4347 con0 4348 csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 |
This theorem is referenced by: nnsucelsuc 6470 |
Copyright terms: Public domain | W3C validator |