Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onsucelsucr | Unicode version |
Description: Membership is inherited by predecessors. The converse, for all ordinals, implies excluded middle, as shown at onsucelsucexmid 4507. However, the converse does hold where is a natural number, as seen at nnsucelsuc 6459. (Contributed by Jim Kingdon, 17-Jul-2019.) |
Ref | Expression |
---|---|
onsucelsucr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . . . 4 | |
2 | sucexb 4474 | . . . 4 | |
3 | 1, 2 | sylibr 133 | . . 3 |
4 | onelss 4365 | . . . . . . 7 | |
5 | eqimss 3196 | . . . . . . . 8 | |
6 | 5 | a1i 9 | . . . . . . 7 |
7 | 4, 6 | jaod 707 | . . . . . 6 |
8 | 7 | adantl 275 | . . . . 5 |
9 | elsucg 4382 | . . . . . . 7 | |
10 | 2, 9 | sylbi 120 | . . . . . 6 |
11 | 10 | adantr 274 | . . . . 5 |
12 | eloni 4353 | . . . . . 6 | |
13 | ordelsuc 4482 | . . . . . 6 | |
14 | 12, 13 | sylan2 284 | . . . . 5 |
15 | 8, 11, 14 | 3imtr4d 202 | . . . 4 |
16 | 15 | impancom 258 | . . 3 |
17 | 3, 16 | mpancom 419 | . 2 |
18 | 17 | com12 30 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 cvv 2726 wss 3116 word 4340 con0 4341 csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: nnsucelsuc 6459 |
Copyright terms: Public domain | W3C validator |