| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucelsucr | Unicode version | ||
| Description: Membership is inherited
by predecessors. The converse, for all ordinals,
implies excluded middle, as shown at onsucelsucexmid 4578. However, the
converse does hold where |
| Ref | Expression |
|---|---|
| onsucelsucr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 |
. . . 4
| |
| 2 | sucexb 4545 |
. . . 4
| |
| 3 | 1, 2 | sylibr 134 |
. . 3
|
| 4 | onelss 4434 |
. . . . . . 7
| |
| 5 | eqimss 3247 |
. . . . . . . 8
| |
| 6 | 5 | a1i 9 |
. . . . . . 7
|
| 7 | 4, 6 | jaod 719 |
. . . . . 6
|
| 8 | 7 | adantl 277 |
. . . . 5
|
| 9 | elsucg 4451 |
. . . . . . 7
| |
| 10 | 2, 9 | sylbi 121 |
. . . . . 6
|
| 11 | 10 | adantr 276 |
. . . . 5
|
| 12 | eloni 4422 |
. . . . . 6
| |
| 13 | ordelsuc 4553 |
. . . . . 6
| |
| 14 | 12, 13 | sylan2 286 |
. . . . 5
|
| 15 | 8, 11, 14 | 3imtr4d 203 |
. . . 4
|
| 16 | 15 | impancom 260 |
. . 3
|
| 17 | 3, 16 | mpancom 422 |
. 2
|
| 18 | 17 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 |
| This theorem is referenced by: nnsucelsuc 6577 |
| Copyright terms: Public domain | W3C validator |