ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucelsucr Unicode version

Theorem onsucelsucr 4501
Description: Membership is inherited by predecessors. The converse, for all ordinals, implies excluded middle, as shown at onsucelsucexmid 4523. However, the converse does hold where  B is a natural number, as seen at nnsucelsuc 6482. (Contributed by Jim Kingdon, 17-Jul-2019.)
Assertion
Ref Expression
onsucelsucr  |-  ( B  e.  On  ->  ( suc  A  e.  suc  B  ->  A  e.  B ) )

Proof of Theorem onsucelsucr
StepHypRef Expression
1 elex 2746 . . . 4  |-  ( suc 
A  e.  suc  B  ->  suc  A  e.  _V )
2 sucexb 4490 . . . 4  |-  ( A  e.  _V  <->  suc  A  e. 
_V )
31, 2sylibr 134 . . 3  |-  ( suc 
A  e.  suc  B  ->  A  e.  _V )
4 onelss 4381 . . . . . . 7  |-  ( B  e.  On  ->  ( suc  A  e.  B  ->  suc  A  C_  B )
)
5 eqimss 3207 . . . . . . . 8  |-  ( suc 
A  =  B  ->  suc  A  C_  B )
65a1i 9 . . . . . . 7  |-  ( B  e.  On  ->  ( suc  A  =  B  ->  suc  A  C_  B )
)
74, 6jaod 717 . . . . . 6  |-  ( B  e.  On  ->  (
( suc  A  e.  B  \/  suc  A  =  B )  ->  suc  A 
C_  B ) )
87adantl 277 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  On )  ->  ( ( suc  A  e.  B  \/  suc  A  =  B )  ->  suc  A  C_  B )
)
9 elsucg 4398 . . . . . . 7  |-  ( suc 
A  e.  _V  ->  ( suc  A  e.  suc  B  <-> 
( suc  A  e.  B  \/  suc  A  =  B ) ) )
102, 9sylbi 121 . . . . . 6  |-  ( A  e.  _V  ->  ( suc  A  e.  suc  B  <->  ( suc  A  e.  B  \/  suc  A  =  B ) ) )
1110adantr 276 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  On )  ->  ( suc  A  e. 
suc  B  <->  ( suc  A  e.  B  \/  suc  A  =  B ) ) )
12 eloni 4369 . . . . . 6  |-  ( B  e.  On  ->  Ord  B )
13 ordelsuc 4498 . . . . . 6  |-  ( ( A  e.  _V  /\  Ord  B )  ->  ( A  e.  B  <->  suc  A  C_  B ) )
1412, 13sylan2 286 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  On )  ->  ( A  e.  B  <->  suc 
A  C_  B )
)
158, 11, 143imtr4d 203 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  On )  ->  ( suc  A  e. 
suc  B  ->  A  e.  B ) )
1615impancom 260 . . 3  |-  ( ( A  e.  _V  /\  suc  A  e.  suc  B
)  ->  ( B  e.  On  ->  A  e.  B ) )
173, 16mpancom 422 . 2  |-  ( suc 
A  e.  suc  B  ->  ( B  e.  On  ->  A  e.  B ) )
1817com12 30 1  |-  ( B  e.  On  ->  ( suc  A  e.  suc  B  ->  A  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2146   _Vcvv 2735    C_ wss 3127   Ord word 4356   Oncon0 4357   suc csuc 4359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-uni 3806  df-tr 4097  df-iord 4360  df-on 4362  df-suc 4365
This theorem is referenced by:  nnsucelsuc  6482
  Copyright terms: Public domain W3C validator