Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onsucelsucr | Unicode version |
Description: Membership is inherited by predecessors. The converse, for all ordinals, implies excluded middle, as shown at onsucelsucexmid 4523. However, the converse does hold where is a natural number, as seen at nnsucelsuc 6482. (Contributed by Jim Kingdon, 17-Jul-2019.) |
Ref | Expression |
---|---|
onsucelsucr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2746 | . . . 4 | |
2 | sucexb 4490 | . . . 4 | |
3 | 1, 2 | sylibr 134 | . . 3 |
4 | onelss 4381 | . . . . . . 7 | |
5 | eqimss 3207 | . . . . . . . 8 | |
6 | 5 | a1i 9 | . . . . . . 7 |
7 | 4, 6 | jaod 717 | . . . . . 6 |
8 | 7 | adantl 277 | . . . . 5 |
9 | elsucg 4398 | . . . . . . 7 | |
10 | 2, 9 | sylbi 121 | . . . . . 6 |
11 | 10 | adantr 276 | . . . . 5 |
12 | eloni 4369 | . . . . . 6 | |
13 | ordelsuc 4498 | . . . . . 6 | |
14 | 12, 13 | sylan2 286 | . . . . 5 |
15 | 8, 11, 14 | 3imtr4d 203 | . . . 4 |
16 | 15 | impancom 260 | . . 3 |
17 | 3, 16 | mpancom 422 | . 2 |
18 | 17 | com12 30 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wo 708 wceq 1353 wcel 2146 cvv 2735 wss 3127 word 4356 con0 4357 csuc 4359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-tr 4097 df-iord 4360 df-on 4362 df-suc 4365 |
This theorem is referenced by: nnsucelsuc 6482 |
Copyright terms: Public domain | W3C validator |