ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnotovb Unicode version

Theorem fnotovb 5918
Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb 5558. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fnotovb  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A  /\  D  e.  B )  ->  ( ( C F D )  =  R  <->  <. C ,  D ,  R >.  e.  F ) )

Proof of Theorem fnotovb
StepHypRef Expression
1 opelxpi 4659 . . . 4  |-  ( ( C  e.  A  /\  D  e.  B )  -> 
<. C ,  D >.  e.  ( A  X.  B
) )
2 fnopfvb 5558 . . . 4  |-  ( ( F  Fn  ( A  X.  B )  /\  <. C ,  D >.  e.  ( A  X.  B
) )  ->  (
( F `  <. C ,  D >. )  =  R  <->  <. <. C ,  D >. ,  R >.  e.  F
) )
31, 2sylan2 286 . . 3  |-  ( ( F  Fn  ( A  X.  B )  /\  ( C  e.  A  /\  D  e.  B
) )  ->  (
( F `  <. C ,  D >. )  =  R  <->  <. <. C ,  D >. ,  R >.  e.  F
) )
433impb 1199 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A  /\  D  e.  B )  ->  ( ( F `  <. C ,  D >. )  =  R  <->  <. <. C ,  D >. ,  R >.  e.  F ) )
5 df-ov 5878 . . 3  |-  ( C F D )  =  ( F `  <. C ,  D >. )
65eqeq1i 2185 . 2  |-  ( ( C F D )  =  R  <->  ( F `  <. C ,  D >. )  =  R )
7 df-ot 3603 . . 3  |-  <. C ,  D ,  R >.  = 
<. <. C ,  D >. ,  R >.
87eleq1i 2243 . 2  |-  ( <. C ,  D ,  R >.  e.  F  <->  <. <. C ,  D >. ,  R >.  e.  F )
94, 6, 83bitr4g 223 1  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A  /\  D  e.  B )  ->  ( ( C F D )  =  R  <->  <. C ,  D ,  R >.  e.  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   <.cop 3596   <.cotp 3597    X. cxp 4625    Fn wfn 5212   ` cfv 5217  (class class class)co 5875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-ot 3603  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225  df-ov 5878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator