ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnotovb Unicode version

Theorem fnotovb 6011
Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb 5643. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fnotovb  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A  /\  D  e.  B )  ->  ( ( C F D )  =  R  <->  <. C ,  D ,  R >.  e.  F ) )

Proof of Theorem fnotovb
StepHypRef Expression
1 opelxpi 4725 . . . 4  |-  ( ( C  e.  A  /\  D  e.  B )  -> 
<. C ,  D >.  e.  ( A  X.  B
) )
2 fnopfvb 5643 . . . 4  |-  ( ( F  Fn  ( A  X.  B )  /\  <. C ,  D >.  e.  ( A  X.  B
) )  ->  (
( F `  <. C ,  D >. )  =  R  <->  <. <. C ,  D >. ,  R >.  e.  F
) )
31, 2sylan2 286 . . 3  |-  ( ( F  Fn  ( A  X.  B )  /\  ( C  e.  A  /\  D  e.  B
) )  ->  (
( F `  <. C ,  D >. )  =  R  <->  <. <. C ,  D >. ,  R >.  e.  F
) )
433impb 1202 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A  /\  D  e.  B )  ->  ( ( F `  <. C ,  D >. )  =  R  <->  <. <. C ,  D >. ,  R >.  e.  F ) )
5 df-ov 5970 . . 3  |-  ( C F D )  =  ( F `  <. C ,  D >. )
65eqeq1i 2215 . 2  |-  ( ( C F D )  =  R  <->  ( F `  <. C ,  D >. )  =  R )
7 df-ot 3653 . . 3  |-  <. C ,  D ,  R >.  = 
<. <. C ,  D >. ,  R >.
87eleq1i 2273 . 2  |-  ( <. C ,  D ,  R >.  e.  F  <->  <. <. C ,  D >. ,  R >.  e.  F )
94, 6, 83bitr4g 223 1  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A  /\  D  e.  B )  ->  ( ( C F D )  =  R  <->  <. C ,  D ,  R >.  e.  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   <.cop 3646   <.cotp 3647    X. cxp 4691    Fn wfn 5285   ` cfv 5290  (class class class)co 5967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-ot 3653  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator