ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabaf Unicode version

Theorem opelopabaf 4233
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4231 uses bound-variable hypotheses in place of distinct variable conditions." (Contributed by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
opelopabaf.x  |-  F/ x ps
opelopabaf.y  |-  F/ y ps
opelopabaf.1  |-  A  e. 
_V
opelopabaf.2  |-  B  e. 
_V
opelopabaf.3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
opelopabaf  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  ps )
Distinct variable groups:    x, y, A   
x, B, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem opelopabaf
StepHypRef Expression
1 opelopabsb 4220 . 2  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [. A  /  x ]. [. B  / 
y ]. ph )
2 opelopabaf.1 . . 3  |-  A  e. 
_V
3 opelopabaf.2 . . 3  |-  B  e. 
_V
4 opelopabaf.x . . . 4  |-  F/ x ps
5 opelopabaf.y . . . 4  |-  F/ y ps
6 nfv 1508 . . . 4  |-  F/ x  B  e.  _V
7 opelopabaf.3 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
84, 5, 6, 7sbc2iegf 3007 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( [. A  /  x ]. [. B  / 
y ]. ph  <->  ps )
)
92, 3, 8mp2an 423 . 2  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  ps )
101, 9bitri 183 1  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335   F/wnf 1440    e. wcel 2128   _Vcvv 2712   [.wsbc 2937   <.cop 3563   {copab 4024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-opab 4026
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator