ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabaf Unicode version

Theorem opelopabaf 4275
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4273 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
opelopabaf.x  |-  F/ x ps
opelopabaf.y  |-  F/ y ps
opelopabaf.1  |-  A  e. 
_V
opelopabaf.2  |-  B  e. 
_V
opelopabaf.3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
opelopabaf  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  ps )
Distinct variable groups:    x, y, A   
x, B, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem opelopabaf
StepHypRef Expression
1 opelopabsb 4262 . 2  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [. A  /  x ]. [. B  / 
y ]. ph )
2 opelopabaf.1 . . 3  |-  A  e. 
_V
3 opelopabaf.2 . . 3  |-  B  e. 
_V
4 opelopabaf.x . . . 4  |-  F/ x ps
5 opelopabaf.y . . . 4  |-  F/ y ps
6 nfv 1528 . . . 4  |-  F/ x  B  e.  _V
7 opelopabaf.3 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
84, 5, 6, 7sbc2iegf 3035 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( [. A  /  x ]. [. B  / 
y ]. ph  <->  ps )
)
92, 3, 8mp2an 426 . 2  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  ps )
101, 9bitri 184 1  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   F/wnf 1460    e. wcel 2148   _Vcvv 2739   [.wsbc 2964   <.cop 3597   {copab 4065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator