ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabaf Unicode version

Theorem opelopabaf 4308
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4306 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
opelopabaf.x  |-  F/ x ps
opelopabaf.y  |-  F/ y ps
opelopabaf.1  |-  A  e. 
_V
opelopabaf.2  |-  B  e. 
_V
opelopabaf.3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
opelopabaf  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  ps )
Distinct variable groups:    x, y, A   
x, B, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem opelopabaf
StepHypRef Expression
1 opelopabsb 4294 . 2  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [. A  /  x ]. [. B  / 
y ]. ph )
2 opelopabaf.1 . . 3  |-  A  e. 
_V
3 opelopabaf.2 . . 3  |-  B  e. 
_V
4 opelopabaf.x . . . 4  |-  F/ x ps
5 opelopabaf.y . . . 4  |-  F/ y ps
6 nfv 1542 . . . 4  |-  F/ x  B  e.  _V
7 opelopabaf.3 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
84, 5, 6, 7sbc2iegf 3060 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( [. A  /  x ]. [. B  / 
y ]. ph  <->  ps )
)
92, 3, 8mp2an 426 . 2  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  ps )
101, 9bitri 184 1  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   F/wnf 1474    e. wcel 2167   _Vcvv 2763   [.wsbc 2989   <.cop 3625   {copab 4093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator