ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brab Unicode version

Theorem brab 4257
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.)
Hypotheses
Ref Expression
opelopab.1  |-  A  e. 
_V
opelopab.2  |-  B  e. 
_V
opelopab.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
opelopab.4  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
brab.5  |-  R  =  { <. x ,  y
>.  |  ph }
Assertion
Ref Expression
brab  |-  ( A R B  <->  ch )
Distinct variable groups:    x, y, A   
x, B, y    ch, x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    R( x, y)

Proof of Theorem brab
StepHypRef Expression
1 opelopab.1 . 2  |-  A  e. 
_V
2 opelopab.2 . 2  |-  B  e. 
_V
3 opelopab.3 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 opelopab.4 . . 3  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
5 brab.5 . . 3  |-  R  =  { <. x ,  y
>.  |  ph }
63, 4, 5brabg 4254 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A R B  <->  ch ) )
71, 2, 6mp2an 424 1  |-  ( A R B  <->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141   _Vcvv 2730   class class class wbr 3989   {copab 4049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051
This theorem is referenced by:  dftpos4  6242  enq0sym  7394  enq0ref  7395  enq0tr  7396  shftfn  10788
  Copyright terms: Public domain W3C validator