ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brab Unicode version

Theorem brab 4303
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.)
Hypotheses
Ref Expression
opelopab.1  |-  A  e. 
_V
opelopab.2  |-  B  e. 
_V
opelopab.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
opelopab.4  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
brab.5  |-  R  =  { <. x ,  y
>.  |  ph }
Assertion
Ref Expression
brab  |-  ( A R B  <->  ch )
Distinct variable groups:    x, y, A   
x, B, y    ch, x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    R( x, y)

Proof of Theorem brab
StepHypRef Expression
1 opelopab.1 . 2  |-  A  e. 
_V
2 opelopab.2 . 2  |-  B  e. 
_V
3 opelopab.3 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 opelopab.4 . . 3  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
5 brab.5 . . 3  |-  R  =  { <. x ,  y
>.  |  ph }
63, 4, 5brabg 4299 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A R B  <->  ch ) )
71, 2, 6mp2an 426 1  |-  ( A R B  <->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760   class class class wbr 4029   {copab 4089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091
This theorem is referenced by:  dftpos4  6316  enq0sym  7492  enq0ref  7493  enq0tr  7494  shftfn  10968
  Copyright terms: Public domain W3C validator