| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brab | Unicode version | ||
| Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) |
| Ref | Expression |
|---|---|
| opelopab.1 |
|
| opelopab.2 |
|
| opelopab.3 |
|
| opelopab.4 |
|
| brab.5 |
|
| Ref | Expression |
|---|---|
| brab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopab.1 |
. 2
| |
| 2 | opelopab.2 |
. 2
| |
| 3 | opelopab.3 |
. . 3
| |
| 4 | opelopab.4 |
. . 3
| |
| 5 | brab.5 |
. . 3
| |
| 6 | 3, 4, 5 | brabg 4315 |
. 2
|
| 7 | 1, 2, 6 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 |
| This theorem is referenced by: dftpos4 6349 enq0sym 7545 enq0ref 7546 enq0tr 7547 shftfn 11135 |
| Copyright terms: Public domain | W3C validator |