ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndrn Unicode version

Theorem 2ndrn 6236
Description: The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
2ndrn  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 2nd `  A )  e. 
ran  R )

Proof of Theorem 2ndrn
StepHypRef Expression
1 simpr 110 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  A  e.  R )
2 1st2nd 6234 . . 3  |-  ( ( Rel  R  /\  A  e.  R )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
32, 1eqeltrrd 2271 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  R )
4 1stexg 6220 . . . 4  |-  ( A  e.  R  ->  ( 1st `  A )  e. 
_V )
5 2ndexg 6221 . . . 4  |-  ( A  e.  R  ->  ( 2nd `  A )  e. 
_V )
64, 5jca 306 . . 3  |-  ( A  e.  R  ->  (
( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V ) )
7 opelrng 4894 . . . 4  |-  ( ( ( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V  /\  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  R )  ->  ( 2nd `  A
)  e.  ran  R
)
873expa 1205 . . 3  |-  ( ( ( ( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V )  /\  <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  R
)  ->  ( 2nd `  A )  e.  ran  R )
96, 8sylan 283 . 2  |-  ( ( A  e.  R  /\  <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  R
)  ->  ( 2nd `  A )  e.  ran  R )
101, 3, 9syl2anc 411 1  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 2nd `  A )  e. 
ran  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   _Vcvv 2760   <.cop 3621   ran crn 4660   Rel wrel 4664   ` cfv 5254   1stc1st 6191   2ndc2nd 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-1st 6193  df-2nd 6194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator