ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndrn Unicode version

Theorem 2ndrn 6268
Description: The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
2ndrn  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 2nd `  A )  e. 
ran  R )

Proof of Theorem 2ndrn
StepHypRef Expression
1 simpr 110 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  A  e.  R )
2 1st2nd 6266 . . 3  |-  ( ( Rel  R  /\  A  e.  R )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
32, 1eqeltrrd 2282 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  R )
4 1stexg 6252 . . . 4  |-  ( A  e.  R  ->  ( 1st `  A )  e. 
_V )
5 2ndexg 6253 . . . 4  |-  ( A  e.  R  ->  ( 2nd `  A )  e. 
_V )
64, 5jca 306 . . 3  |-  ( A  e.  R  ->  (
( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V ) )
7 opelrng 4909 . . . 4  |-  ( ( ( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V  /\  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  R )  ->  ( 2nd `  A
)  e.  ran  R
)
873expa 1205 . . 3  |-  ( ( ( ( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V )  /\  <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  R
)  ->  ( 2nd `  A )  e.  ran  R )
96, 8sylan 283 . 2  |-  ( ( A  e.  R  /\  <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  R
)  ->  ( 2nd `  A )  e.  ran  R )
101, 3, 9syl2anc 411 1  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 2nd `  A )  e. 
ran  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2175   _Vcvv 2771   <.cop 3635   ran crn 4675   Rel wrel 4679   ` cfv 5270   1stc1st 6223   2ndc2nd 6224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fo 5276  df-fv 5278  df-1st 6225  df-2nd 6226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator