ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opid Unicode version

Theorem opid 3875
Description: The ordered pair  <. A ,  A >. in Kuratowski's representation. (Contributed by FL, 28-Dec-2011.)
Hypothesis
Ref Expression
opid.1  |-  A  e. 
_V
Assertion
Ref Expression
opid  |-  <. A ,  A >.  =  { { A } }

Proof of Theorem opid
StepHypRef Expression
1 dfsn2 3680 . . . 4  |-  { A }  =  { A ,  A }
21eqcomi 2233 . . 3  |-  { A ,  A }  =  { A }
32preq2i 3747 . 2  |-  { { A } ,  { A ,  A } }  =  { { A } ,  { A } }
4 opid.1 . . 3  |-  A  e. 
_V
54, 4dfop 3856 . 2  |-  <. A ,  A >.  =  { { A } ,  { A ,  A } }
6 dfsn2 3680 . 2  |-  { { A } }  =  { { A } ,  { A } }
73, 5, 63eqtr4i 2260 1  |-  <. A ,  A >.  =  { { A } }
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666   {cpr 3667   <.cop 3669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675
This theorem is referenced by:  dmsnsnsng  5206  funopg  5352  funopsn  5817
  Copyright terms: Public domain W3C validator