ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opid Unicode version

Theorem opid 3826
Description: The ordered pair  <. A ,  A >. in Kuratowski's representation. (Contributed by FL, 28-Dec-2011.)
Hypothesis
Ref Expression
opid.1  |-  A  e. 
_V
Assertion
Ref Expression
opid  |-  <. A ,  A >.  =  { { A } }

Proof of Theorem opid
StepHypRef Expression
1 dfsn2 3636 . . . 4  |-  { A }  =  { A ,  A }
21eqcomi 2200 . . 3  |-  { A ,  A }  =  { A }
32preq2i 3703 . 2  |-  { { A } ,  { A ,  A } }  =  { { A } ,  { A } }
4 opid.1 . . 3  |-  A  e. 
_V
54, 4dfop 3807 . 2  |-  <. A ,  A >.  =  { { A } ,  { A ,  A } }
6 dfsn2 3636 . 2  |-  { { A } }  =  { { A } ,  { A } }
73, 5, 63eqtr4i 2227 1  |-  <. A ,  A >.  =  { { A } }
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   _Vcvv 2763   {csn 3622   {cpr 3623   <.cop 3625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631
This theorem is referenced by:  dmsnsnsng  5147  funopg  5292
  Copyright terms: Public domain W3C validator