ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opid Unicode version

Theorem opid 3797
Description: The ordered pair  <. A ,  A >. in Kuratowski's representation. (Contributed by FL, 28-Dec-2011.)
Hypothesis
Ref Expression
opid.1  |-  A  e. 
_V
Assertion
Ref Expression
opid  |-  <. A ,  A >.  =  { { A } }

Proof of Theorem opid
StepHypRef Expression
1 dfsn2 3607 . . . 4  |-  { A }  =  { A ,  A }
21eqcomi 2181 . . 3  |-  { A ,  A }  =  { A }
32preq2i 3674 . 2  |-  { { A } ,  { A ,  A } }  =  { { A } ,  { A } }
4 opid.1 . . 3  |-  A  e. 
_V
54, 4dfop 3778 . 2  |-  <. A ,  A >.  =  { { A } ,  { A ,  A } }
6 dfsn2 3607 . 2  |-  { { A } }  =  { { A } ,  { A } }
73, 5, 63eqtr4i 2208 1  |-  <. A ,  A >.  =  { { A } }
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148   _Vcvv 2738   {csn 3593   {cpr 3594   <.cop 3596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-op 3602
This theorem is referenced by:  dmsnsnsng  5107  funopg  5251
  Copyright terms: Public domain W3C validator