ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opid Unicode version

Theorem opid 3851
Description: The ordered pair  <. A ,  A >. in Kuratowski's representation. (Contributed by FL, 28-Dec-2011.)
Hypothesis
Ref Expression
opid.1  |-  A  e. 
_V
Assertion
Ref Expression
opid  |-  <. A ,  A >.  =  { { A } }

Proof of Theorem opid
StepHypRef Expression
1 dfsn2 3657 . . . 4  |-  { A }  =  { A ,  A }
21eqcomi 2211 . . 3  |-  { A ,  A }  =  { A }
32preq2i 3724 . 2  |-  { { A } ,  { A ,  A } }  =  { { A } ,  { A } }
4 opid.1 . . 3  |-  A  e. 
_V
54, 4dfop 3832 . 2  |-  <. A ,  A >.  =  { { A } ,  { A ,  A } }
6 dfsn2 3657 . 2  |-  { { A } }  =  { { A } ,  { A } }
73, 5, 63eqtr4i 2238 1  |-  <. A ,  A >.  =  { { A } }
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2178   _Vcvv 2776   {csn 3643   {cpr 3644   <.cop 3646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652
This theorem is referenced by:  dmsnsnsng  5179  funopg  5324  funopsn  5785
  Copyright terms: Public domain W3C validator