| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmsnsnsng | Unicode version | ||
| Description: The domain of the singleton of the singleton of a singleton. (Contributed by Jim Kingdon, 16-Dec-2018.) |
| Ref | Expression |
|---|---|
| dmsnsnsng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 |
. . . . . . 7
| |
| 2 | 1 | opid 3827 |
. . . . . 6
|
| 3 | sneq 3634 |
. . . . . . 7
| |
| 4 | 3 | sneqd 3636 |
. . . . . 6
|
| 5 | 2, 4 | eqtrid 2241 |
. . . . 5
|
| 6 | 5 | sneqd 3636 |
. . . 4
|
| 7 | 6 | dmeqd 4869 |
. . 3
|
| 8 | 7, 3 | eqeq12d 2211 |
. 2
|
| 9 | 1 | dmsnop 5144 |
. 2
|
| 10 | 8, 9 | vtoclg 2824 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-dm 4674 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |