ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsnsnsng Unicode version

Theorem dmsnsnsng 5088
Description: The domain of the singleton of the singleton of a singleton. (Contributed by Jim Kingdon, 16-Dec-2018.)
Assertion
Ref Expression
dmsnsnsng  |-  ( A  e.  _V  ->  dom  { { { A } } }  =  { A } )

Proof of Theorem dmsnsnsng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . . . 7  |-  x  e. 
_V
21opid 3783 . . . . . 6  |-  <. x ,  x >.  =  { { x } }
3 sneq 3594 . . . . . . 7  |-  ( x  =  A  ->  { x }  =  { A } )
43sneqd 3596 . . . . . 6  |-  ( x  =  A  ->  { {
x } }  =  { { A } }
)
52, 4eqtrid 2215 . . . . 5  |-  ( x  =  A  ->  <. x ,  x >.  =  { { A } } )
65sneqd 3596 . . . 4  |-  ( x  =  A  ->  { <. x ,  x >. }  =  { { { A } } } )
76dmeqd 4813 . . 3  |-  ( x  =  A  ->  dom  {
<. x ,  x >. }  =  dom  { { { A } } }
)
87, 3eqeq12d 2185 . 2  |-  ( x  =  A  ->  ( dom  { <. x ,  x >. }  =  { x } 
<->  dom  { { { A } } }  =  { A } ) )
91dmsnop 5084 . 2  |-  dom  { <. x ,  x >. }  =  { x }
108, 9vtoclg 2790 1  |-  ( A  e.  _V  ->  dom  { { { A } } }  =  { A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   _Vcvv 2730   {csn 3583   <.cop 3586   dom cdm 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-dm 4621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator