ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsnsnsng Unicode version

Theorem dmsnsnsng 5179
Description: The domain of the singleton of the singleton of a singleton. (Contributed by Jim Kingdon, 16-Dec-2018.)
Assertion
Ref Expression
dmsnsnsng  |-  ( A  e.  _V  ->  dom  { { { A } } }  =  { A } )

Proof of Theorem dmsnsnsng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2779 . . . . . . 7  |-  x  e. 
_V
21opid 3851 . . . . . 6  |-  <. x ,  x >.  =  { { x } }
3 sneq 3654 . . . . . . 7  |-  ( x  =  A  ->  { x }  =  { A } )
43sneqd 3656 . . . . . 6  |-  ( x  =  A  ->  { {
x } }  =  { { A } }
)
52, 4eqtrid 2252 . . . . 5  |-  ( x  =  A  ->  <. x ,  x >.  =  { { A } } )
65sneqd 3656 . . . 4  |-  ( x  =  A  ->  { <. x ,  x >. }  =  { { { A } } } )
76dmeqd 4899 . . 3  |-  ( x  =  A  ->  dom  {
<. x ,  x >. }  =  dom  { { { A } } }
)
87, 3eqeq12d 2222 . 2  |-  ( x  =  A  ->  ( dom  { <. x ,  x >. }  =  { x } 
<->  dom  { { { A } } }  =  { A } ) )
91dmsnop 5175 . 2  |-  dom  { <. x ,  x >. }  =  { x }
108, 9vtoclg 2838 1  |-  ( A  e.  _V  ->  dom  { { { A } } }  =  { A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776   {csn 3643   <.cop 3646   dom cdm 4693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-dm 4703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator