ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsnsnsng Unicode version

Theorem dmsnsnsng 5206
Description: The domain of the singleton of the singleton of a singleton. (Contributed by Jim Kingdon, 16-Dec-2018.)
Assertion
Ref Expression
dmsnsnsng  |-  ( A  e.  _V  ->  dom  { { { A } } }  =  { A } )

Proof of Theorem dmsnsnsng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . . . . 7  |-  x  e. 
_V
21opid 3875 . . . . . 6  |-  <. x ,  x >.  =  { { x } }
3 sneq 3677 . . . . . . 7  |-  ( x  =  A  ->  { x }  =  { A } )
43sneqd 3679 . . . . . 6  |-  ( x  =  A  ->  { {
x } }  =  { { A } }
)
52, 4eqtrid 2274 . . . . 5  |-  ( x  =  A  ->  <. x ,  x >.  =  { { A } } )
65sneqd 3679 . . . 4  |-  ( x  =  A  ->  { <. x ,  x >. }  =  { { { A } } } )
76dmeqd 4925 . . 3  |-  ( x  =  A  ->  dom  {
<. x ,  x >. }  =  dom  { { { A } } }
)
87, 3eqeq12d 2244 . 2  |-  ( x  =  A  ->  ( dom  { <. x ,  x >. }  =  { x } 
<->  dom  { { { A } } }  =  { A } ) )
91dmsnop 5202 . 2  |-  dom  { <. x ,  x >. }  =  { x }
108, 9vtoclg 2861 1  |-  ( A  e.  _V  ->  dom  { { { A } } }  =  { A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666   <.cop 3669   dom cdm 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-dm 4729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator