ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opid GIF version

Theorem opid 3646
Description: The ordered pair 𝐴, 𝐴 in Kuratowski's representation. (Contributed by FL, 28-Dec-2011.)
Hypothesis
Ref Expression
opid.1 𝐴 ∈ V
Assertion
Ref Expression
opid 𝐴, 𝐴⟩ = {{𝐴}}

Proof of Theorem opid
StepHypRef Expression
1 dfsn2 3464 . . . 4 {𝐴} = {𝐴, 𝐴}
21eqcomi 2093 . . 3 {𝐴, 𝐴} = {𝐴}
32preq2i 3527 . 2 {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}}
4 opid.1 . . 3 𝐴 ∈ V
54, 4dfop 3627 . 2 𝐴, 𝐴⟩ = {{𝐴}, {𝐴, 𝐴}}
6 dfsn2 3464 . 2 {{𝐴}} = {{𝐴}, {𝐴}}
73, 5, 63eqtr4i 2119 1 𝐴, 𝐴⟩ = {{𝐴}}
Colors of variables: wff set class
Syntax hints:   = wceq 1290  wcel 1439  Vcvv 2620  {csn 3450  {cpr 3451  cop 3453
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-un 3004  df-sn 3456  df-pr 3457  df-op 3459
This theorem is referenced by:  dmsnsnsng  4921  funopg  5061
  Copyright terms: Public domain W3C validator