![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opid | GIF version |
Description: The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. (Contributed by FL, 28-Dec-2011.) |
Ref | Expression |
---|---|
opid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
opid | ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 3464 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | eqcomi 2093 | . . 3 ⊢ {𝐴, 𝐴} = {𝐴} |
3 | 2 | preq2i 3527 | . 2 ⊢ {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}} |
4 | opid.1 | . . 3 ⊢ 𝐴 ∈ V | |
5 | 4, 4 | dfop 3627 | . 2 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}, {𝐴, 𝐴}} |
6 | dfsn2 3464 | . 2 ⊢ {{𝐴}} = {{𝐴}, {𝐴}} | |
7 | 3, 5, 6 | 3eqtr4i 2119 | 1 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
Colors of variables: wff set class |
Syntax hints: = wceq 1290 ∈ wcel 1439 Vcvv 2620 {csn 3450 {cpr 3451 〈cop 3453 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-v 2622 df-un 3004 df-sn 3456 df-pr 3457 df-op 3459 |
This theorem is referenced by: dmsnsnsng 4921 funopg 5061 |
Copyright terms: Public domain | W3C validator |