ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opid GIF version

Theorem opid 3822
Description: The ordered pair 𝐴, 𝐴 in Kuratowski's representation. (Contributed by FL, 28-Dec-2011.)
Hypothesis
Ref Expression
opid.1 𝐴 ∈ V
Assertion
Ref Expression
opid 𝐴, 𝐴⟩ = {{𝐴}}

Proof of Theorem opid
StepHypRef Expression
1 dfsn2 3632 . . . 4 {𝐴} = {𝐴, 𝐴}
21eqcomi 2197 . . 3 {𝐴, 𝐴} = {𝐴}
32preq2i 3699 . 2 {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}}
4 opid.1 . . 3 𝐴 ∈ V
54, 4dfop 3803 . 2 𝐴, 𝐴⟩ = {{𝐴}, {𝐴, 𝐴}}
6 dfsn2 3632 . 2 {{𝐴}} = {{𝐴}, {𝐴}}
73, 5, 63eqtr4i 2224 1 𝐴, 𝐴⟩ = {{𝐴}}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  Vcvv 2760  {csn 3618  {cpr 3619  cop 3621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627
This theorem is referenced by:  dmsnsnsng  5143  funopg  5288
  Copyright terms: Public domain W3C validator