| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opid | GIF version | ||
| Description: The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. (Contributed by FL, 28-Dec-2011.) |
| Ref | Expression |
|---|---|
| opid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| opid | ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 3680 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | 1 | eqcomi 2233 | . . 3 ⊢ {𝐴, 𝐴} = {𝐴} |
| 3 | 2 | preq2i 3747 | . 2 ⊢ {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}} |
| 4 | opid.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 5 | 4, 4 | dfop 3855 | . 2 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}, {𝐴, 𝐴}} |
| 6 | dfsn2 3680 | . 2 ⊢ {{𝐴}} = {{𝐴}, {𝐴}} | |
| 7 | 3, 5, 6 | 3eqtr4i 2260 | 1 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 Vcvv 2799 {csn 3666 {cpr 3667 〈cop 3669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: dmsnsnsng 5205 funopg 5351 funopsn 5816 |
| Copyright terms: Public domain | W3C validator |