Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opid | GIF version |
Description: The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. (Contributed by FL, 28-Dec-2011.) |
Ref | Expression |
---|---|
opid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
opid | ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 3590 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | eqcomi 2169 | . . 3 ⊢ {𝐴, 𝐴} = {𝐴} |
3 | 2 | preq2i 3657 | . 2 ⊢ {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}} |
4 | opid.1 | . . 3 ⊢ 𝐴 ∈ V | |
5 | 4, 4 | dfop 3757 | . 2 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}, {𝐴, 𝐴}} |
6 | dfsn2 3590 | . 2 ⊢ {{𝐴}} = {{𝐴}, {𝐴}} | |
7 | 3, 5, 6 | 3eqtr4i 2196 | 1 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 Vcvv 2726 {csn 3576 {cpr 3577 〈cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 |
This theorem is referenced by: dmsnsnsng 5081 funopg 5222 |
Copyright terms: Public domain | W3C validator |