ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opid GIF version

Theorem opid 3837
Description: The ordered pair 𝐴, 𝐴 in Kuratowski's representation. (Contributed by FL, 28-Dec-2011.)
Hypothesis
Ref Expression
opid.1 𝐴 ∈ V
Assertion
Ref Expression
opid 𝐴, 𝐴⟩ = {{𝐴}}

Proof of Theorem opid
StepHypRef Expression
1 dfsn2 3647 . . . 4 {𝐴} = {𝐴, 𝐴}
21eqcomi 2209 . . 3 {𝐴, 𝐴} = {𝐴}
32preq2i 3714 . 2 {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}}
4 opid.1 . . 3 𝐴 ∈ V
54, 4dfop 3818 . 2 𝐴, 𝐴⟩ = {{𝐴}, {𝐴, 𝐴}}
6 dfsn2 3647 . 2 {{𝐴}} = {{𝐴}, {𝐴}}
73, 5, 63eqtr4i 2236 1 𝐴, 𝐴⟩ = {{𝐴}}
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2176  Vcvv 2772  {csn 3633  {cpr 3634  cop 3636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642
This theorem is referenced by:  dmsnsnsng  5160  funopg  5305  funopsn  5762
  Copyright terms: Public domain W3C validator