ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opid GIF version

Theorem opid 3851
Description: The ordered pair 𝐴, 𝐴 in Kuratowski's representation. (Contributed by FL, 28-Dec-2011.)
Hypothesis
Ref Expression
opid.1 𝐴 ∈ V
Assertion
Ref Expression
opid 𝐴, 𝐴⟩ = {{𝐴}}

Proof of Theorem opid
StepHypRef Expression
1 dfsn2 3657 . . . 4 {𝐴} = {𝐴, 𝐴}
21eqcomi 2211 . . 3 {𝐴, 𝐴} = {𝐴}
32preq2i 3724 . 2 {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}}
4 opid.1 . . 3 𝐴 ∈ V
54, 4dfop 3832 . 2 𝐴, 𝐴⟩ = {{𝐴}, {𝐴, 𝐴}}
6 dfsn2 3657 . 2 {{𝐴}} = {{𝐴}, {𝐴}}
73, 5, 63eqtr4i 2238 1 𝐴, 𝐴⟩ = {{𝐴}}
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2178  Vcvv 2776  {csn 3643  {cpr 3644  cop 3646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652
This theorem is referenced by:  dmsnsnsng  5179  funopg  5324  funopsn  5785
  Copyright terms: Public domain W3C validator