![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opid | GIF version |
Description: The ordered pair ⟨𝐴, 𝐴⟩ in Kuratowski's representation. (Contributed by FL, 28-Dec-2011.) |
Ref | Expression |
---|---|
opid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
opid | ⊢ ⟨𝐴, 𝐴⟩ = {{𝐴}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 3607 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | eqcomi 2181 | . . 3 ⊢ {𝐴, 𝐴} = {𝐴} |
3 | 2 | preq2i 3674 | . 2 ⊢ {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}} |
4 | opid.1 | . . 3 ⊢ 𝐴 ∈ V | |
5 | 4, 4 | dfop 3778 | . 2 ⊢ ⟨𝐴, 𝐴⟩ = {{𝐴}, {𝐴, 𝐴}} |
6 | dfsn2 3607 | . 2 ⊢ {{𝐴}} = {{𝐴}, {𝐴}} | |
7 | 3, 5, 6 | 3eqtr4i 2208 | 1 ⊢ ⟨𝐴, 𝐴⟩ = {{𝐴}} |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 Vcvv 2738 {csn 3593 {cpr 3594 ⟨cop 3596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 df-sn 3599 df-pr 3600 df-op 3602 |
This theorem is referenced by: dmsnsnsng 5107 funopg 5251 |
Copyright terms: Public domain | W3C validator |