| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opid | GIF version | ||
| Description: The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. (Contributed by FL, 28-Dec-2011.) |
| Ref | Expression |
|---|---|
| opid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| opid | ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 3636 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | 1 | eqcomi 2200 | . . 3 ⊢ {𝐴, 𝐴} = {𝐴} |
| 3 | 2 | preq2i 3703 | . 2 ⊢ {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}} |
| 4 | opid.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 5 | 4, 4 | dfop 3807 | . 2 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}, {𝐴, 𝐴}} |
| 6 | dfsn2 3636 | . 2 ⊢ {{𝐴}} = {{𝐴}, {𝐴}} | |
| 7 | 3, 5, 6 | 3eqtr4i 2227 | 1 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3622 {cpr 3623 〈cop 3625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 |
| This theorem is referenced by: dmsnsnsng 5147 funopg 5292 |
| Copyright terms: Public domain | W3C validator |