![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opid | GIF version |
Description: The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. (Contributed by FL, 28-Dec-2011.) |
Ref | Expression |
---|---|
opid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
opid | ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 3632 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | eqcomi 2197 | . . 3 ⊢ {𝐴, 𝐴} = {𝐴} |
3 | 2 | preq2i 3699 | . 2 ⊢ {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}} |
4 | opid.1 | . . 3 ⊢ 𝐴 ∈ V | |
5 | 4, 4 | dfop 3803 | . 2 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}, {𝐴, 𝐴}} |
6 | dfsn2 3632 | . 2 ⊢ {{𝐴}} = {{𝐴}, {𝐴}} | |
7 | 3, 5, 6 | 3eqtr4i 2224 | 1 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 Vcvv 2760 {csn 3618 {cpr 3619 〈cop 3621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 |
This theorem is referenced by: dmsnsnsng 5143 funopg 5288 |
Copyright terms: Public domain | W3C validator |