| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfov | Unicode version | ||
| Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.) |
| Ref | Expression |
|---|---|
| nfov.1 |
|
| nfov.2 |
|
| nfov.3 |
|
| Ref | Expression |
|---|---|
| nfov |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfov.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | nfov.2 |
. . . 4
| |
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | nfov.3 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | 2, 4, 6 | nfovd 5996 |
. 2
|
| 8 | 7 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: csbov123g 6006 ovmpos 6092 ov2gf 6093 ovmpodxf 6094 ovmpodv2 6102 ovi3 6106 nfof 6187 offval2 6197 caucvgprprlemaddq 7856 nfseq 10639 fsumadd 11832 mertenslem2 11962 fprodrec 12055 fproddivapf 12057 oddpwdclemdvds 12607 oddpwdclemndvds 12608 pcmpt 12781 pcmptdvds 12783 cnmpt2t 14880 cnmptcom 14885 fsumcncntop 15154 dvmptfsum 15312 elplyd 15328 |
| Copyright terms: Public domain | W3C validator |