ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfov Unicode version

Theorem nfov 5907
Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.)
Hypotheses
Ref Expression
nfov.1  |-  F/_ x A
nfov.2  |-  F/_ x F
nfov.3  |-  F/_ x B
Assertion
Ref Expression
nfov  |-  F/_ x
( A F B )

Proof of Theorem nfov
StepHypRef Expression
1 nfov.1 . . . 4  |-  F/_ x A
21a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
3 nfov.2 . . . 4  |-  F/_ x F
43a1i 9 . . 3  |-  ( T. 
->  F/_ x F )
5 nfov.3 . . . 4  |-  F/_ x B
65a1i 9 . . 3  |-  ( T. 
->  F/_ x B )
72, 4, 6nfovd 5906 . 2  |-  ( T. 
->  F/_ x ( A F B ) )
87mptru 1362 1  |-  F/_ x
( A F B )
Colors of variables: wff set class
Syntax hints:   T. wtru 1354   F/_wnfc 2306  (class class class)co 5877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880
This theorem is referenced by:  csbov123g  5915  ovmpos  6000  ov2gf  6001  ovmpodxf  6002  ovmpodv2  6010  ovi3  6013  nfof  6090  offval2  6100  caucvgprprlemaddq  7709  nfseq  10457  fsumadd  11416  mertenslem2  11546  fprodrec  11639  fproddivapf  11641  oddpwdclemdvds  12172  oddpwdclemndvds  12173  pcmpt  12343  pcmptdvds  12345  cnmpt2t  13878  cnmptcom  13883  fsumcncntop  14141
  Copyright terms: Public domain W3C validator