| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfov | Unicode version | ||
| Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.) |
| Ref | Expression |
|---|---|
| nfov.1 |
|
| nfov.2 |
|
| nfov.3 |
|
| Ref | Expression |
|---|---|
| nfov |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfov.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | nfov.2 |
. . . 4
| |
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | nfov.3 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | 2, 4, 6 | nfovd 6030 |
. 2
|
| 8 | 7 | mptru 1404 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 |
| This theorem is referenced by: csbov123g 6040 ovmpos 6128 ov2gf 6129 ovmpodxf 6130 ovmpodv2 6138 ovi3 6142 nfof 6224 offval2 6234 caucvgprprlemaddq 7895 nfseq 10679 fsumadd 11917 mertenslem2 12047 fprodrec 12140 fproddivapf 12142 oddpwdclemdvds 12692 oddpwdclemndvds 12693 pcmpt 12866 pcmptdvds 12868 cnmpt2t 14967 cnmptcom 14972 fsumcncntop 15241 dvmptfsum 15399 elplyd 15415 |
| Copyright terms: Public domain | W3C validator |