Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfov | Unicode version |
Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.) |
Ref | Expression |
---|---|
nfov.1 | |
nfov.2 | |
nfov.3 |
Ref | Expression |
---|---|
nfov |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfov.1 | . . . 4 | |
2 | 1 | a1i 9 | . . 3 |
3 | nfov.2 | . . . 4 | |
4 | 3 | a1i 9 | . . 3 |
5 | nfov.3 | . . . 4 | |
6 | 5 | a1i 9 | . . 3 |
7 | 2, 4, 6 | nfovd 5871 | . 2 |
8 | 7 | mptru 1352 | 1 |
Colors of variables: wff set class |
Syntax hints: wtru 1344 wnfc 2295 (class class class)co 5842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: csbov123g 5880 ovmpos 5965 ov2gf 5966 ovmpodxf 5967 ovmpodv2 5975 ovi3 5978 nfof 6055 offval2 6065 caucvgprprlemaddq 7649 nfseq 10390 fsumadd 11347 mertenslem2 11477 fprodrec 11570 fproddivapf 11572 oddpwdclemdvds 12102 oddpwdclemndvds 12103 pcmpt 12273 pcmptdvds 12275 cnmpt2t 12933 cnmptcom 12938 fsumcncntop 13196 |
Copyright terms: Public domain | W3C validator |