| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfov | Unicode version | ||
| Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.) |
| Ref | Expression |
|---|---|
| nfov.1 |
|
| nfov.2 |
|
| nfov.3 |
|
| Ref | Expression |
|---|---|
| nfov |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfov.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | nfov.2 |
. . . 4
| |
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | nfov.3 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | 2, 4, 6 | nfovd 5973 |
. 2
|
| 8 | 7 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: csbov123g 5983 ovmpos 6069 ov2gf 6070 ovmpodxf 6071 ovmpodv2 6079 ovi3 6083 nfof 6164 offval2 6174 caucvgprprlemaddq 7821 nfseq 10602 fsumadd 11717 mertenslem2 11847 fprodrec 11940 fproddivapf 11942 oddpwdclemdvds 12492 oddpwdclemndvds 12493 pcmpt 12666 pcmptdvds 12668 cnmpt2t 14765 cnmptcom 14770 fsumcncntop 15039 dvmptfsum 15197 elplyd 15213 |
| Copyright terms: Public domain | W3C validator |