| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfov | Unicode version | ||
| Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.) |
| Ref | Expression |
|---|---|
| nfov.1 |
|
| nfov.2 |
|
| nfov.3 |
|
| Ref | Expression |
|---|---|
| nfov |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfov.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | nfov.2 |
. . . 4
| |
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | nfov.3 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | 2, 4, 6 | nfovd 5975 |
. 2
|
| 8 | 7 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 |
| This theorem is referenced by: csbov123g 5985 ovmpos 6071 ov2gf 6072 ovmpodxf 6073 ovmpodv2 6081 ovi3 6085 nfof 6166 offval2 6176 caucvgprprlemaddq 7823 nfseq 10604 fsumadd 11750 mertenslem2 11880 fprodrec 11973 fproddivapf 11975 oddpwdclemdvds 12525 oddpwdclemndvds 12526 pcmpt 12699 pcmptdvds 12701 cnmpt2t 14798 cnmptcom 14803 fsumcncntop 15072 dvmptfsum 15230 elplyd 15246 |
| Copyright terms: Public domain | W3C validator |