| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfov | Unicode version | ||
| Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.) |
| Ref | Expression |
|---|---|
| nfov.1 |
|
| nfov.2 |
|
| nfov.3 |
|
| Ref | Expression |
|---|---|
| nfov |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfov.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | nfov.2 |
. . . 4
| |
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | nfov.3 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | 2, 4, 6 | nfovd 5954 |
. 2
|
| 8 | 7 | mptru 1373 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: csbov123g 5964 ovmpos 6050 ov2gf 6051 ovmpodxf 6052 ovmpodv2 6060 ovi3 6064 nfof 6145 offval2 6155 caucvgprprlemaddq 7792 nfseq 10566 fsumadd 11588 mertenslem2 11718 fprodrec 11811 fproddivapf 11813 oddpwdclemdvds 12363 oddpwdclemndvds 12364 pcmpt 12537 pcmptdvds 12539 cnmpt2t 14613 cnmptcom 14618 fsumcncntop 14887 dvmptfsum 15045 elplyd 15061 |
| Copyright terms: Public domain | W3C validator |