ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opres Unicode version

Theorem opres 5014
Description: Ordered pair membership in a restriction when the first member belongs to the restricting class. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
opres.1  |-  B  e. 
_V
Assertion
Ref Expression
opres  |-  ( A  e.  D  ->  ( <. A ,  B >.  e.  ( C  |`  D )  <->  <. A ,  B >.  e.  C ) )

Proof of Theorem opres
StepHypRef Expression
1 opres.1 . . 3  |-  B  e. 
_V
21opelres 5010 . 2  |-  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) )
32rbaib 926 1  |-  ( A  e.  D  ->  ( <. A ,  B >.  e.  ( C  |`  D )  <->  <. A ,  B >.  e.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2200   _Vcvv 2799   <.cop 3669    |` cres 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-xp 4725  df-res 4731
This theorem is referenced by:  resieq  5015  2elresin  5434
  Copyright terms: Public domain W3C validator