ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resieq Unicode version

Theorem resieq 4956
Description: A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
resieq  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B (  _I  |`  A ) C  <->  B  =  C ) )

Proof of Theorem resieq
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq2 4037 . . . . 5  |-  ( x  =  C  ->  ( B (  _I  |`  A ) x  <->  B (  _I  |`  A ) C ) )
2 eqeq2 2206 . . . . 5  |-  ( x  =  C  ->  ( B  =  x  <->  B  =  C ) )
31, 2bibi12d 235 . . . 4  |-  ( x  =  C  ->  (
( B (  _I  |`  A ) x  <->  B  =  x )  <->  ( B
(  _I  |`  A ) C  <->  B  =  C
) ) )
43imbi2d 230 . . 3  |-  ( x  =  C  ->  (
( B  e.  A  ->  ( B (  _I  |`  A ) x  <->  B  =  x ) )  <->  ( B  e.  A  ->  ( B (  _I  |`  A ) C  <->  B  =  C
) ) ) )
5 vex 2766 . . . . 5  |-  x  e. 
_V
65opres 4955 . . . 4  |-  ( B  e.  A  ->  ( <. B ,  x >.  e.  (  _I  |`  A )  <->  <. B ,  x >.  e.  _I  ) )
7 df-br 4034 . . . 4  |-  ( B (  _I  |`  A ) x  <->  <. B ,  x >.  e.  (  _I  |`  A ) )
85ideq 4818 . . . . 5  |-  ( B  _I  x  <->  B  =  x )
9 df-br 4034 . . . . 5  |-  ( B  _I  x  <->  <. B ,  x >.  e.  _I  )
108, 9bitr3i 186 . . . 4  |-  ( B  =  x  <->  <. B ,  x >.  e.  _I  )
116, 7, 103bitr4g 223 . . 3  |-  ( B  e.  A  ->  ( B (  _I  |`  A ) x  <->  B  =  x
) )
124, 11vtoclg 2824 . 2  |-  ( C  e.  A  ->  ( B  e.  A  ->  ( B (  _I  |`  A ) C  <->  B  =  C
) ) )
1312impcom 125 1  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B (  _I  |`  A ) C  <->  B  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   <.cop 3625   class class class wbr 4033    _I cid 4323    |` cres 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-res 4675
This theorem is referenced by:  foeqcnvco  5837  f1eqcocnv  5838
  Copyright terms: Public domain W3C validator