| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resieq | Unicode version | ||
| Description: A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004.) |
| Ref | Expression |
|---|---|
| resieq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4087 |
. . . . 5
| |
| 2 | eqeq2 2239 |
. . . . 5
| |
| 3 | 1, 2 | bibi12d 235 |
. . . 4
|
| 4 | 3 | imbi2d 230 |
. . 3
|
| 5 | vex 2802 |
. . . . 5
| |
| 6 | 5 | opres 5014 |
. . . 4
|
| 7 | df-br 4084 |
. . . 4
| |
| 8 | 5 | ideq 4874 |
. . . . 5
|
| 9 | df-br 4084 |
. . . . 5
| |
| 10 | 8, 9 | bitr3i 186 |
. . . 4
|
| 11 | 6, 7, 10 | 3bitr4g 223 |
. . 3
|
| 12 | 4, 11 | vtoclg 2861 |
. 2
|
| 13 | 12 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-res 4731 |
| This theorem is referenced by: foeqcnvco 5914 f1eqcocnv 5915 |
| Copyright terms: Public domain | W3C validator |