ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resieq Unicode version

Theorem resieq 4970
Description: A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
resieq  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B (  _I  |`  A ) C  <->  B  =  C ) )

Proof of Theorem resieq
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq2 4049 . . . . 5  |-  ( x  =  C  ->  ( B (  _I  |`  A ) x  <->  B (  _I  |`  A ) C ) )
2 eqeq2 2215 . . . . 5  |-  ( x  =  C  ->  ( B  =  x  <->  B  =  C ) )
31, 2bibi12d 235 . . . 4  |-  ( x  =  C  ->  (
( B (  _I  |`  A ) x  <->  B  =  x )  <->  ( B
(  _I  |`  A ) C  <->  B  =  C
) ) )
43imbi2d 230 . . 3  |-  ( x  =  C  ->  (
( B  e.  A  ->  ( B (  _I  |`  A ) x  <->  B  =  x ) )  <->  ( B  e.  A  ->  ( B (  _I  |`  A ) C  <->  B  =  C
) ) ) )
5 vex 2775 . . . . 5  |-  x  e. 
_V
65opres 4969 . . . 4  |-  ( B  e.  A  ->  ( <. B ,  x >.  e.  (  _I  |`  A )  <->  <. B ,  x >.  e.  _I  ) )
7 df-br 4046 . . . 4  |-  ( B (  _I  |`  A ) x  <->  <. B ,  x >.  e.  (  _I  |`  A ) )
85ideq 4831 . . . . 5  |-  ( B  _I  x  <->  B  =  x )
9 df-br 4046 . . . . 5  |-  ( B  _I  x  <->  <. B ,  x >.  e.  _I  )
108, 9bitr3i 186 . . . 4  |-  ( B  =  x  <->  <. B ,  x >.  e.  _I  )
116, 7, 103bitr4g 223 . . 3  |-  ( B  e.  A  ->  ( B (  _I  |`  A ) x  <->  B  =  x
) )
124, 11vtoclg 2833 . 2  |-  ( C  e.  A  ->  ( B  e.  A  ->  ( B (  _I  |`  A ) C  <->  B  =  C
) ) )
1312impcom 125 1  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B (  _I  |`  A ) C  <->  B  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   <.cop 3636   class class class wbr 4045    _I cid 4336    |` cres 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-res 4688
This theorem is referenced by:  foeqcnvco  5861  f1eqcocnv  5862
  Copyright terms: Public domain W3C validator