ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2elresin Unicode version

Theorem 2elresin 5319
Description: Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994.)
Assertion
Ref Expression
2elresin  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  <->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )

Proof of Theorem 2elresin
StepHypRef Expression
1 fnop 5311 . . . . . . . 8  |-  ( ( F  Fn  A  /\  <.
x ,  y >.  e.  F )  ->  x  e.  A )
2 fnop 5311 . . . . . . . 8  |-  ( ( G  Fn  B  /\  <.
x ,  z >.  e.  G )  ->  x  e.  B )
31, 2anim12i 338 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  <. x ,  y
>.  e.  F )  /\  ( G  Fn  B  /\  <. x ,  z
>.  e.  G ) )  ->  ( x  e.  A  /\  x  e.  B ) )
43an4s 588 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) )  ->  ( x  e.  A  /\  x  e.  B ) )
5 elin 3316 . . . . . 6  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
64, 5sylibr 134 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) )  ->  x  e.  ( A  i^i  B ) )
7 vex 2738 . . . . . . . 8  |-  y  e. 
_V
87opres 4909 . . . . . . 7  |-  ( x  e.  ( A  i^i  B )  ->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  <->  <. x ,  y >.  e.  F
) )
9 vex 2738 . . . . . . . 8  |-  z  e. 
_V
109opres 4909 . . . . . . 7  |-  ( x  e.  ( A  i^i  B )  ->  ( <. x ,  z >.  e.  ( G  |`  ( A  i^i  B ) )  <->  <. x ,  z >.  e.  G
) )
118, 10anbi12d 473 . . . . . 6  |-  ( x  e.  ( A  i^i  B )  ->  ( ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z
>.  e.  ( G  |`  ( A  i^i  B ) ) )  <->  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) ) )
1211biimprd 158 . . . . 5  |-  ( x  e.  ( A  i^i  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
136, 12syl 14 . . . 4  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) )  ->  ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
1413ex 115 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  -> 
( <. x ,  y
>.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) ) )
1514pm2.43d 50 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  -> 
( <. x ,  y
>.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
16 resss 4924 . . . 4  |-  ( F  |`  ( A  i^i  B
) )  C_  F
1716sseli 3149 . . 3  |-  ( <.
x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  ->  <. x ,  y
>.  e.  F )
18 resss 4924 . . . 4  |-  ( G  |`  ( A  i^i  B
) )  C_  G
1918sseli 3149 . . 3  |-  ( <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) )  ->  <. x ,  z
>.  e.  G )
2017, 19anim12i 338 . 2  |-  ( (
<. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z
>.  e.  ( G  |`  ( A  i^i  B ) ) )  ->  ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )
2115, 20impbid1 142 1  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  <->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2146    i^i cin 3126   <.cop 3592    |` cres 4622    Fn wfn 5203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-rel 4627  df-dm 4630  df-res 4632  df-fun 5210  df-fn 5211
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator