ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2elresin Unicode version

Theorem 2elresin 5309
Description: Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994.)
Assertion
Ref Expression
2elresin  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  <->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )

Proof of Theorem 2elresin
StepHypRef Expression
1 fnop 5301 . . . . . . . 8  |-  ( ( F  Fn  A  /\  <.
x ,  y >.  e.  F )  ->  x  e.  A )
2 fnop 5301 . . . . . . . 8  |-  ( ( G  Fn  B  /\  <.
x ,  z >.  e.  G )  ->  x  e.  B )
31, 2anim12i 336 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  <. x ,  y
>.  e.  F )  /\  ( G  Fn  B  /\  <. x ,  z
>.  e.  G ) )  ->  ( x  e.  A  /\  x  e.  B ) )
43an4s 583 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) )  ->  ( x  e.  A  /\  x  e.  B ) )
5 elin 3310 . . . . . 6  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
64, 5sylibr 133 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) )  ->  x  e.  ( A  i^i  B ) )
7 vex 2733 . . . . . . . 8  |-  y  e. 
_V
87opres 4900 . . . . . . 7  |-  ( x  e.  ( A  i^i  B )  ->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  <->  <. x ,  y >.  e.  F
) )
9 vex 2733 . . . . . . . 8  |-  z  e. 
_V
109opres 4900 . . . . . . 7  |-  ( x  e.  ( A  i^i  B )  ->  ( <. x ,  z >.  e.  ( G  |`  ( A  i^i  B ) )  <->  <. x ,  z >.  e.  G
) )
118, 10anbi12d 470 . . . . . 6  |-  ( x  e.  ( A  i^i  B )  ->  ( ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z
>.  e.  ( G  |`  ( A  i^i  B ) ) )  <->  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) ) )
1211biimprd 157 . . . . 5  |-  ( x  e.  ( A  i^i  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
136, 12syl 14 . . . 4  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) )  ->  ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
1413ex 114 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  -> 
( <. x ,  y
>.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) ) )
1514pm2.43d 50 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  -> 
( <. x ,  y
>.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
16 resss 4915 . . . 4  |-  ( F  |`  ( A  i^i  B
) )  C_  F
1716sseli 3143 . . 3  |-  ( <.
x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  ->  <. x ,  y
>.  e.  F )
18 resss 4915 . . . 4  |-  ( G  |`  ( A  i^i  B
) )  C_  G
1918sseli 3143 . . 3  |-  ( <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) )  ->  <. x ,  z
>.  e.  G )
2017, 19anim12i 336 . 2  |-  ( (
<. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z
>.  e.  ( G  |`  ( A  i^i  B ) ) )  ->  ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )
2115, 20impbid1 141 1  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  <->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2141    i^i cin 3120   <.cop 3586    |` cres 4613    Fn wfn 5193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-dm 4621  df-res 4623  df-fun 5200  df-fn 5201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator