ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2elresin Unicode version

Theorem 2elresin 5299
Description: Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994.)
Assertion
Ref Expression
2elresin  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  <->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )

Proof of Theorem 2elresin
StepHypRef Expression
1 fnop 5291 . . . . . . . 8  |-  ( ( F  Fn  A  /\  <.
x ,  y >.  e.  F )  ->  x  e.  A )
2 fnop 5291 . . . . . . . 8  |-  ( ( G  Fn  B  /\  <.
x ,  z >.  e.  G )  ->  x  e.  B )
31, 2anim12i 336 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  <. x ,  y
>.  e.  F )  /\  ( G  Fn  B  /\  <. x ,  z
>.  e.  G ) )  ->  ( x  e.  A  /\  x  e.  B ) )
43an4s 578 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) )  ->  ( x  e.  A  /\  x  e.  B ) )
5 elin 3305 . . . . . 6  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
64, 5sylibr 133 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) )  ->  x  e.  ( A  i^i  B ) )
7 vex 2729 . . . . . . . 8  |-  y  e. 
_V
87opres 4893 . . . . . . 7  |-  ( x  e.  ( A  i^i  B )  ->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  <->  <. x ,  y >.  e.  F
) )
9 vex 2729 . . . . . . . 8  |-  z  e. 
_V
109opres 4893 . . . . . . 7  |-  ( x  e.  ( A  i^i  B )  ->  ( <. x ,  z >.  e.  ( G  |`  ( A  i^i  B ) )  <->  <. x ,  z >.  e.  G
) )
118, 10anbi12d 465 . . . . . 6  |-  ( x  e.  ( A  i^i  B )  ->  ( ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z
>.  e.  ( G  |`  ( A  i^i  B ) ) )  <->  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) ) )
1211biimprd 157 . . . . 5  |-  ( x  e.  ( A  i^i  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
136, 12syl 14 . . . 4  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) )  ->  ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
1413ex 114 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  -> 
( <. x ,  y
>.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) ) )
1514pm2.43d 50 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  -> 
( <. x ,  y
>.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
16 resss 4908 . . . 4  |-  ( F  |`  ( A  i^i  B
) )  C_  F
1716sseli 3138 . . 3  |-  ( <.
x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  ->  <. x ,  y
>.  e.  F )
18 resss 4908 . . . 4  |-  ( G  |`  ( A  i^i  B
) )  C_  G
1918sseli 3138 . . 3  |-  ( <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) )  ->  <. x ,  z
>.  e.  G )
2017, 19anim12i 336 . 2  |-  ( (
<. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z
>.  e.  ( G  |`  ( A  i^i  B ) ) )  ->  ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )
2115, 20impbid1 141 1  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  <->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136    i^i cin 3115   <.cop 3579    |` cres 4606    Fn wfn 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-dm 4614  df-res 4616  df-fun 5190  df-fn 5191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator