ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelres Unicode version

Theorem opelres 4792
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.)
Hypothesis
Ref Expression
opelres.1  |-  B  e. 
_V
Assertion
Ref Expression
opelres  |-  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) )

Proof of Theorem opelres
StepHypRef Expression
1 df-res 4519 . . 3  |-  ( C  |`  D )  =  ( C  i^i  ( D  X.  _V ) )
21eleq2i 2182 . 2  |-  ( <. A ,  B >.  e.  ( C  |`  D )  <->  <. A ,  B >.  e.  ( C  i^i  ( D  X.  _V ) ) )
3 elin 3227 . 2  |-  ( <. A ,  B >.  e.  ( C  i^i  ( D  X.  _V ) )  <-> 
( <. A ,  B >.  e.  C  /\  <. A ,  B >.  e.  ( D  X.  _V )
) )
4 opelres.1 . . . 4  |-  B  e. 
_V
5 opelxp 4537 . . . 4  |-  ( <. A ,  B >.  e.  ( D  X.  _V ) 
<->  ( A  e.  D  /\  B  e.  _V ) )
64, 5mpbiran2 908 . . 3  |-  ( <. A ,  B >.  e.  ( D  X.  _V ) 
<->  A  e.  D )
76anbi2i 450 . 2  |-  ( (
<. A ,  B >.  e.  C  /\  <. A ,  B >.  e.  ( D  X.  _V ) )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) )
82, 3, 73bitri 205 1  |-  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 1463   _Vcvv 2658    i^i cin 3038   <.cop 3498    X. cxp 4505    |` cres 4509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-opab 3958  df-xp 4513  df-res 4519
This theorem is referenced by:  brres  4793  opelresg  4794  opres  4796  dmres  4808  elres  4823  relssres  4825  resiexg  4832  iss  4833  asymref  4892  ssrnres  4949  cnvresima  4996  ressn  5047  funssres  5133  fcnvres  5274
  Copyright terms: Public domain W3C validator