ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelres Unicode version

Theorem opelres 5010
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.)
Hypothesis
Ref Expression
opelres.1  |-  B  e. 
_V
Assertion
Ref Expression
opelres  |-  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) )

Proof of Theorem opelres
StepHypRef Expression
1 df-res 4731 . . 3  |-  ( C  |`  D )  =  ( C  i^i  ( D  X.  _V ) )
21eleq2i 2296 . 2  |-  ( <. A ,  B >.  e.  ( C  |`  D )  <->  <. A ,  B >.  e.  ( C  i^i  ( D  X.  _V ) ) )
3 elin 3387 . 2  |-  ( <. A ,  B >.  e.  ( C  i^i  ( D  X.  _V ) )  <-> 
( <. A ,  B >.  e.  C  /\  <. A ,  B >.  e.  ( D  X.  _V )
) )
4 opelres.1 . . . 4  |-  B  e. 
_V
5 opelxp 4749 . . . 4  |-  ( <. A ,  B >.  e.  ( D  X.  _V ) 
<->  ( A  e.  D  /\  B  e.  _V ) )
64, 5mpbiran2 947 . . 3  |-  ( <. A ,  B >.  e.  ( D  X.  _V ) 
<->  A  e.  D )
76anbi2i 457 . 2  |-  ( (
<. A ,  B >.  e.  C  /\  <. A ,  B >.  e.  ( D  X.  _V ) )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) )
82, 3, 73bitri 206 1  |-  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2200   _Vcvv 2799    i^i cin 3196   <.cop 3669    X. cxp 4717    |` cres 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-xp 4725  df-res 4731
This theorem is referenced by:  brres  5011  opelresg  5012  opres  5014  dmres  5026  elres  5041  relssres  5043  resiexg  5050  iss  5051  restidsing  5061  asymref  5114  ssrnres  5171  cnvresima  5218  ressn  5269  funssres  5360  fcnvres  5509
  Copyright terms: Public domain W3C validator