ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brresg Unicode version

Theorem brresg 4950
Description: Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.)
Assertion
Ref Expression
brresg  |-  ( B  e.  V  ->  ( A ( C  |`  D ) B  <->  ( A C B  /\  A  e.  D ) ) )

Proof of Theorem brresg
StepHypRef Expression
1 opelresg 4949 . 2  |-  ( B  e.  V  ->  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) ) )
2 df-br 4030 . 2  |-  ( A ( C  |`  D ) B  <->  <. A ,  B >.  e.  ( C  |`  D ) )
3 df-br 4030 . . 3  |-  ( A C B  <->  <. A ,  B >.  e.  C )
43anbi1i 458 . 2  |-  ( ( A C B  /\  A  e.  D )  <->  (
<. A ,  B >.  e.  C  /\  A  e.  D ) )
51, 2, 43bitr4g 223 1  |-  ( B  e.  V  ->  ( A ( C  |`  D ) B  <->  ( A C B  /\  A  e.  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   <.cop 3621   class class class wbr 4029    |` cres 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-res 4671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator