ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trssord Unicode version

Theorem trssord 4382
Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.)
Assertion
Ref Expression
trssord  |-  ( ( Tr  A  /\  A  C_  B  /\  Ord  B
)  ->  Ord  A )

Proof of Theorem trssord
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dford3 4369 . . . . . . 7  |-  ( Ord 
B  <->  ( Tr  B  /\  A. x  e.  B  Tr  x ) )
21simprbi 275 . . . . . 6  |-  ( Ord 
B  ->  A. x  e.  B  Tr  x
)
3 ssralv 3221 . . . . . 6  |-  ( A 
C_  B  ->  ( A. x  e.  B  Tr  x  ->  A. x  e.  A  Tr  x
) )
42, 3syl5 32 . . . . 5  |-  ( A 
C_  B  ->  ( Ord  B  ->  A. x  e.  A  Tr  x
) )
54imp 124 . . . 4  |-  ( ( A  C_  B  /\  Ord  B )  ->  A. x  e.  A  Tr  x
)
65anim2i 342 . . 3  |-  ( ( Tr  A  /\  ( A  C_  B  /\  Ord  B ) )  ->  ( Tr  A  /\  A. x  e.  A  Tr  x
) )
763impb 1199 . 2  |-  ( ( Tr  A  /\  A  C_  B  /\  Ord  B
)  ->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
8 dford3 4369 . 2  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
97, 8sylibr 134 1  |-  ( ( Tr  A  /\  A  C_  B  /\  Ord  B
)  ->  Ord  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978   A.wral 2455    C_ wss 3131   Tr wtr 4103   Ord word 4364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-ral 2460  df-in 3137  df-ss 3144  df-iord 4368
This theorem is referenced by:  ordelord  4383  ordin  4387  ssorduni  4488  ordtriexmidlem  4520  ordtri2or2exmidlem  4527  onsucelsucexmidlem  4530  ordsuc  4564
  Copyright terms: Public domain W3C validator