| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trssord | Unicode version | ||
| Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.) |
| Ref | Expression |
|---|---|
| trssord |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dford3 4415 |
. . . . . . 7
| |
| 2 | 1 | simprbi 275 |
. . . . . 6
|
| 3 | ssralv 3257 |
. . . . . 6
| |
| 4 | 2, 3 | syl5 32 |
. . . . 5
|
| 5 | 4 | imp 124 |
. . . 4
|
| 6 | 5 | anim2i 342 |
. . 3
|
| 7 | 6 | 3impb 1202 |
. 2
|
| 8 | dford3 4415 |
. 2
| |
| 9 | 7, 8 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-ral 2489 df-in 3172 df-ss 3179 df-iord 4414 |
| This theorem is referenced by: ordelord 4429 ordin 4433 ssorduni 4536 ordtriexmidlem 4568 ordtri2or2exmidlem 4575 onsucelsucexmidlem 4578 ordsuc 4612 |
| Copyright terms: Public domain | W3C validator |