| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trssord | Unicode version | ||
| Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.) |
| Ref | Expression |
|---|---|
| trssord |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dford3 4402 |
. . . . . . 7
| |
| 2 | 1 | simprbi 275 |
. . . . . 6
|
| 3 | ssralv 3247 |
. . . . . 6
| |
| 4 | 2, 3 | syl5 32 |
. . . . 5
|
| 5 | 4 | imp 124 |
. . . 4
|
| 6 | 5 | anim2i 342 |
. . 3
|
| 7 | 6 | 3impb 1201 |
. 2
|
| 8 | dford3 4402 |
. 2
| |
| 9 | 7, 8 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-in 3163 df-ss 3170 df-iord 4401 |
| This theorem is referenced by: ordelord 4416 ordin 4420 ssorduni 4523 ordtriexmidlem 4555 ordtri2or2exmidlem 4562 onsucelsucexmidlem 4565 ordsuc 4599 |
| Copyright terms: Public domain | W3C validator |