ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordin GIF version

Theorem ordin 4370
Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
ordin ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))

Proof of Theorem ordin
StepHypRef Expression
1 ordtr 4363 . . 3 (Ord 𝐴 → Tr 𝐴)
2 ordtr 4363 . . 3 (Ord 𝐵 → Tr 𝐵)
3 trin 4097 . . 3 ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴𝐵))
41, 2, 3syl2an 287 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → Tr (𝐴𝐵))
5 inss2 3348 . . 3 (𝐴𝐵) ⊆ 𝐵
6 trssord 4365 . . 3 ((Tr (𝐴𝐵) ∧ (𝐴𝐵) ⊆ 𝐵 ∧ Ord 𝐵) → Ord (𝐴𝐵))
75, 6mp3an2 1320 . 2 ((Tr (𝐴𝐵) ∧ Ord 𝐵) → Ord (𝐴𝐵))
84, 7sylancom 418 1 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  cin 3120  wss 3121  Tr wtr 4087  Ord word 4347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-uni 3797  df-tr 4088  df-iord 4351
This theorem is referenced by:  onin  4371  smores  6271  smores2  6273
  Copyright terms: Public domain W3C validator