ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordin GIF version

Theorem ordin 4363
Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
ordin ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))

Proof of Theorem ordin
StepHypRef Expression
1 ordtr 4356 . . 3 (Ord 𝐴 → Tr 𝐴)
2 ordtr 4356 . . 3 (Ord 𝐵 → Tr 𝐵)
3 trin 4090 . . 3 ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴𝐵))
41, 2, 3syl2an 287 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → Tr (𝐴𝐵))
5 inss2 3343 . . 3 (𝐴𝐵) ⊆ 𝐵
6 trssord 4358 . . 3 ((Tr (𝐴𝐵) ∧ (𝐴𝐵) ⊆ 𝐵 ∧ Ord 𝐵) → Ord (𝐴𝐵))
75, 6mp3an2 1315 . 2 ((Tr (𝐴𝐵) ∧ Ord 𝐵) → Ord (𝐴𝐵))
84, 7sylancom 417 1 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  cin 3115  wss 3116  Tr wtr 4080  Ord word 4340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-ss 3129  df-uni 3790  df-tr 4081  df-iord 4344
This theorem is referenced by:  onin  4364  smores  6260  smores2  6262
  Copyright terms: Public domain W3C validator