| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordin | GIF version | ||
| Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.) |
| Ref | Expression |
|---|---|
| ordin | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 4433 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 2 | ordtr 4433 | . . 3 ⊢ (Ord 𝐵 → Tr 𝐵) | |
| 3 | trin 4160 | . . 3 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴 ∩ 𝐵)) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Tr (𝐴 ∩ 𝐵)) |
| 5 | inss2 3398 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 6 | trssord 4435 | . . 3 ⊢ ((Tr (𝐴 ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | |
| 7 | 5, 6 | mp3an2 1338 | . 2 ⊢ ((Tr (𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) |
| 8 | 4, 7 | sylancom 420 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∩ cin 3169 ⊆ wss 3170 Tr wtr 4150 Ord word 4417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-in 3176 df-ss 3183 df-uni 3857 df-tr 4151 df-iord 4421 |
| This theorem is referenced by: onin 4441 smores 6391 smores2 6393 |
| Copyright terms: Public domain | W3C validator |