| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mp3an2 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) | 
| Ref | Expression | 
|---|---|
| mp3an2.1 | 
 | 
| mp3an2.2 | 
 | 
| Ref | Expression | 
|---|---|
| mp3an2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mp3an2.1 | 
. 2
 | |
| 2 | mp3an2.2 | 
. . 3
 | |
| 3 | 2 | 3expa 1205 | 
. 2
 | 
| 4 | 1, 3 | mpanl2 435 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: mp3anl2 1343 ordin 4420 ordsuc 4599 omv 6513 oeiv 6514 omv2 6523 1idprl 7657 muladd11 8159 negsub 8274 subneg 8275 ltaddneg 8451 muleqadd 8695 diveqap1 8732 conjmulap 8756 nnsub 9029 addltmul 9228 zltp1le 9380 gtndiv 9421 eluzp1m1 9625 xnn0le2is012 9941 divelunit 10077 fznatpl1 10151 flqbi2 10381 flqdiv 10413 frecfzen2 10519 nn0ennn 10525 seqshft2g 10574 seqf1oglem1 10611 faclbnd3 10835 shftfvalg 10983 ovshftex 10984 shftfval 10986 abs2dif 11271 cos2t 11915 sin01gt0 11927 cos01gt0 11928 demoivre 11938 demoivreALT 11939 omeo 12063 gcd0id 12146 sqgcd 12196 isprm3 12286 eulerthlemth 12400 pczpre 12466 pcrec 12477 setscom 12718 setsslid 12729 setsslnid 12730 mulgm1 13272 abssinper 15082 lgs1 15285 | 
| Copyright terms: Public domain | W3C validator |