Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an2 | Unicode version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an2.1 | |
mp3an2.2 |
Ref | Expression |
---|---|
mp3an2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2.1 | . 2 | |
2 | mp3an2.2 | . . 3 | |
3 | 2 | 3expa 1198 | . 2 |
4 | 1, 3 | mpanl2 433 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: mp3anl2 1327 ordin 4368 ordsuc 4545 omv 6431 oeiv 6432 omv2 6441 1idprl 7539 muladd11 8039 negsub 8154 subneg 8155 ltaddneg 8330 muleqadd 8573 diveqap1 8609 conjmulap 8633 nnsub 8904 addltmul 9101 zltp1le 9253 gtndiv 9294 eluzp1m1 9497 xnn0le2is012 9810 divelunit 9946 fznatpl1 10019 flqbi2 10234 flqdiv 10264 frecfzen2 10370 nn0ennn 10376 faclbnd3 10664 shftfvalg 10769 ovshftex 10770 shftfval 10772 abs2dif 11057 cos2t 11700 sin01gt0 11711 cos01gt0 11712 demoivre 11722 demoivreALT 11723 omeo 11844 gcd0id 11921 sqgcd 11971 isprm3 12059 eulerthlemth 12173 pczpre 12238 pcrec 12249 setscom 12443 setsslid 12453 setsslnid 12454 abssinper 13520 lgs1 13698 |
Copyright terms: Public domain | W3C validator |