Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an2 | Unicode version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an2.1 | |
mp3an2.2 |
Ref | Expression |
---|---|
mp3an2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2.1 | . 2 | |
2 | mp3an2.2 | . . 3 | |
3 | 2 | 3expa 1193 | . 2 |
4 | 1, 3 | mpanl2 432 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: mp3anl2 1322 ordin 4362 ordsuc 4539 omv 6419 oeiv 6420 omv2 6429 1idprl 7527 muladd11 8027 negsub 8142 subneg 8143 ltaddneg 8318 muleqadd 8561 diveqap1 8597 conjmulap 8621 nnsub 8892 addltmul 9089 zltp1le 9241 gtndiv 9282 eluzp1m1 9485 xnn0le2is012 9798 divelunit 9934 fznatpl1 10007 flqbi2 10222 flqdiv 10252 frecfzen2 10358 nn0ennn 10364 faclbnd3 10652 shftfvalg 10756 ovshftex 10757 shftfval 10759 abs2dif 11044 cos2t 11687 sin01gt0 11698 cos01gt0 11699 demoivre 11709 demoivreALT 11710 omeo 11831 gcd0id 11908 sqgcd 11958 isprm3 12046 eulerthlemth 12160 pczpre 12225 pcrec 12236 setscom 12430 setsslid 12440 setsslnid 12441 abssinper 13367 lgs1 13545 |
Copyright terms: Public domain | W3C validator |