ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucg Unicode version

Theorem ordsucg 4594
Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 20-Nov-2018.)
Assertion
Ref Expression
ordsucg  |-  ( A  e.  _V  ->  ( Ord  A  <->  Ord  suc  A )
)

Proof of Theorem ordsucg
StepHypRef Expression
1 ordsucim 4592 . 2  |-  ( Ord 
A  ->  Ord  suc  A
)
2 sucidg 4507 . . 3  |-  ( A  e.  _V  ->  A  e.  suc  A )
3 ordelord 4472 . . . 4  |-  ( ( Ord  suc  A  /\  A  e.  suc  A )  ->  Ord  A )
43ex 115 . . 3  |-  ( Ord 
suc  A  ->  ( A  e.  suc  A  ->  Ord  A ) )
52, 4syl5com 29 . 2  |-  ( A  e.  _V  ->  ( Ord  suc  A  ->  Ord  A ) )
61, 5impbid2 143 1  |-  ( A  e.  _V  ->  ( Ord  A  <->  Ord  suc  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2200   _Vcvv 2799   Ord word 4453   suc csuc 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-uni 3889  df-tr 4183  df-iord 4457  df-suc 4462
This theorem is referenced by:  onsucb  4595
  Copyright terms: Public domain W3C validator