Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordsucg | Unicode version |
Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 20-Nov-2018.) |
Ref | Expression |
---|---|
ordsucg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsucim 4493 | . 2 | |
2 | sucidg 4410 | . . 3 | |
3 | ordelord 4375 | . . . 4 | |
4 | 3 | ex 115 | . . 3 |
5 | 2, 4 | syl5com 29 | . 2 |
6 | 1, 5 | impbid2 143 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wcel 2146 cvv 2735 word 4356 csuc 4359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-uni 3806 df-tr 4097 df-iord 4360 df-suc 4365 |
This theorem is referenced by: sucelon 4496 |
Copyright terms: Public domain | W3C validator |