ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucg Unicode version

Theorem ordsucg 4479
Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 20-Nov-2018.)
Assertion
Ref Expression
ordsucg  |-  ( A  e.  _V  ->  ( Ord  A  <->  Ord  suc  A )
)

Proof of Theorem ordsucg
StepHypRef Expression
1 ordsucim 4477 . 2  |-  ( Ord 
A  ->  Ord  suc  A
)
2 sucidg 4394 . . 3  |-  ( A  e.  _V  ->  A  e.  suc  A )
3 ordelord 4359 . . . 4  |-  ( ( Ord  suc  A  /\  A  e.  suc  A )  ->  Ord  A )
43ex 114 . . 3  |-  ( Ord 
suc  A  ->  ( A  e.  suc  A  ->  Ord  A ) )
52, 4syl5com 29 . 2  |-  ( A  e.  _V  ->  ( Ord  suc  A  ->  Ord  A ) )
61, 5impbid2 142 1  |-  ( A  e.  _V  ->  ( Ord  A  <->  Ord  suc  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2136   _Vcvv 2726   Ord word 4340   suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-uni 3790  df-tr 4081  df-iord 4344  df-suc 4349
This theorem is referenced by:  sucelon  4480
  Copyright terms: Public domain W3C validator