ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucb Unicode version

Theorem onsucb 4569
Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 4567. (Contributed by NM, 9-Sep-2003.)
Assertion
Ref Expression
onsucb  |-  ( A  e.  On  <->  suc  A  e.  On )

Proof of Theorem onsucb
StepHypRef Expression
1 onsuc 4567 . 2  |-  ( A  e.  On  ->  suc  A  e.  On )
2 eloni 4440 . . 3  |-  ( suc 
A  e.  On  ->  Ord 
suc  A )
3 elex 2788 . . . . 5  |-  ( suc 
A  e.  On  ->  suc 
A  e.  _V )
4 sucexb 4563 . . . . 5  |-  ( A  e.  _V  <->  suc  A  e. 
_V )
53, 4sylibr 134 . . . 4  |-  ( suc 
A  e.  On  ->  A  e.  _V )
6 elong 4438 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  On  <->  Ord  A ) )
7 ordsucg 4568 . . . . 5  |-  ( A  e.  _V  ->  ( Ord  A  <->  Ord  suc  A )
)
86, 7bitrd 188 . . . 4  |-  ( A  e.  _V  ->  ( A  e.  On  <->  Ord  suc  A
) )
95, 8syl 14 . . 3  |-  ( suc 
A  e.  On  ->  ( A  e.  On  <->  Ord  suc  A
) )
102, 9mpbird 167 . 2  |-  ( suc 
A  e.  On  ->  A  e.  On )
111, 10impbii 126 1  |-  ( A  e.  On  <->  suc  A  e.  On )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2178   _Vcvv 2776   Ord word 4427   Oncon0 4428   suc csuc 4430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-tr 4159  df-iord 4431  df-on 4433  df-suc 4436
This theorem is referenced by:  onsucmin  4573  onsucuni2  4630
  Copyright terms: Public domain W3C validator