ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucb Unicode version

Theorem onsucb 4535
Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 4533. (Contributed by NM, 9-Sep-2003.)
Assertion
Ref Expression
onsucb  |-  ( A  e.  On  <->  suc  A  e.  On )

Proof of Theorem onsucb
StepHypRef Expression
1 onsuc 4533 . 2  |-  ( A  e.  On  ->  suc  A  e.  On )
2 eloni 4406 . . 3  |-  ( suc 
A  e.  On  ->  Ord 
suc  A )
3 elex 2771 . . . . 5  |-  ( suc 
A  e.  On  ->  suc 
A  e.  _V )
4 sucexb 4529 . . . . 5  |-  ( A  e.  _V  <->  suc  A  e. 
_V )
53, 4sylibr 134 . . . 4  |-  ( suc 
A  e.  On  ->  A  e.  _V )
6 elong 4404 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  On  <->  Ord  A ) )
7 ordsucg 4534 . . . . 5  |-  ( A  e.  _V  ->  ( Ord  A  <->  Ord  suc  A )
)
86, 7bitrd 188 . . . 4  |-  ( A  e.  _V  ->  ( A  e.  On  <->  Ord  suc  A
) )
95, 8syl 14 . . 3  |-  ( suc 
A  e.  On  ->  ( A  e.  On  <->  Ord  suc  A
) )
102, 9mpbird 167 . 2  |-  ( suc 
A  e.  On  ->  A  e.  On )
111, 10impbii 126 1  |-  ( A  e.  On  <->  suc  A  e.  On )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2164   _Vcvv 2760   Ord word 4393   Oncon0 4394   suc csuc 4396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402
This theorem is referenced by:  onsucmin  4539  onsucuni2  4596
  Copyright terms: Public domain W3C validator