ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucb Unicode version

Theorem onsucb 4514
Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 4512. (Contributed by NM, 9-Sep-2003.)
Assertion
Ref Expression
onsucb  |-  ( A  e.  On  <->  suc  A  e.  On )

Proof of Theorem onsucb
StepHypRef Expression
1 onsuc 4512 . 2  |-  ( A  e.  On  ->  suc  A  e.  On )
2 eloni 4387 . . 3  |-  ( suc 
A  e.  On  ->  Ord 
suc  A )
3 elex 2760 . . . . 5  |-  ( suc 
A  e.  On  ->  suc 
A  e.  _V )
4 sucexb 4508 . . . . 5  |-  ( A  e.  _V  <->  suc  A  e. 
_V )
53, 4sylibr 134 . . . 4  |-  ( suc 
A  e.  On  ->  A  e.  _V )
6 elong 4385 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  On  <->  Ord  A ) )
7 ordsucg 4513 . . . . 5  |-  ( A  e.  _V  ->  ( Ord  A  <->  Ord  suc  A )
)
86, 7bitrd 188 . . . 4  |-  ( A  e.  _V  ->  ( A  e.  On  <->  Ord  suc  A
) )
95, 8syl 14 . . 3  |-  ( suc 
A  e.  On  ->  ( A  e.  On  <->  Ord  suc  A
) )
102, 9mpbird 167 . 2  |-  ( suc 
A  e.  On  ->  A  e.  On )
111, 10impbii 126 1  |-  ( A  e.  On  <->  suc  A  e.  On )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2158   _Vcvv 2749   Ord word 4374   Oncon0 4375   suc csuc 4377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-uni 3822  df-tr 4114  df-iord 4378  df-on 4380  df-suc 4383
This theorem is referenced by:  onsucmin  4518  onsucuni2  4575
  Copyright terms: Public domain W3C validator