ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucb Unicode version

Theorem onsucb 4551
Description: A class is an ordinal number if and only if its successor is an ordinal number. Biconditional form of onsuc 4549. (Contributed by NM, 9-Sep-2003.)
Assertion
Ref Expression
onsucb  |-  ( A  e.  On  <->  suc  A  e.  On )

Proof of Theorem onsucb
StepHypRef Expression
1 onsuc 4549 . 2  |-  ( A  e.  On  ->  suc  A  e.  On )
2 eloni 4422 . . 3  |-  ( suc 
A  e.  On  ->  Ord 
suc  A )
3 elex 2783 . . . . 5  |-  ( suc 
A  e.  On  ->  suc 
A  e.  _V )
4 sucexb 4545 . . . . 5  |-  ( A  e.  _V  <->  suc  A  e. 
_V )
53, 4sylibr 134 . . . 4  |-  ( suc 
A  e.  On  ->  A  e.  _V )
6 elong 4420 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  On  <->  Ord  A ) )
7 ordsucg 4550 . . . . 5  |-  ( A  e.  _V  ->  ( Ord  A  <->  Ord  suc  A )
)
86, 7bitrd 188 . . . 4  |-  ( A  e.  _V  ->  ( A  e.  On  <->  Ord  suc  A
) )
95, 8syl 14 . . 3  |-  ( suc 
A  e.  On  ->  ( A  e.  On  <->  Ord  suc  A
) )
102, 9mpbird 167 . 2  |-  ( suc 
A  e.  On  ->  A  e.  On )
111, 10impbii 126 1  |-  ( A  e.  On  <->  suc  A  e.  On )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2176   _Vcvv 2772   Ord word 4409   Oncon0 4410   suc csuc 4412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-tr 4143  df-iord 4413  df-on 4415  df-suc 4418
This theorem is referenced by:  onsucmin  4555  onsucuni2  4612
  Copyright terms: Public domain W3C validator