ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsuc Unicode version

Theorem onsuc 4537
Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 4552. Forward implication of onsucb 4539. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
onsuc  |-  ( A  e.  On  ->  suc  A  e.  On )

Proof of Theorem onsuc
StepHypRef Expression
1 eloni 4410 . . 3  |-  ( A  e.  On  ->  Ord  A )
2 ordsucim 4536 . . 3  |-  ( Ord 
A  ->  Ord  suc  A
)
31, 2syl 14 . 2  |-  ( A  e.  On  ->  Ord  suc 
A )
4 sucexg 4534 . . 3  |-  ( A  e.  On  ->  suc  A  e.  _V )
5 elong 4408 . . 3  |-  ( suc 
A  e.  _V  ->  ( suc  A  e.  On  <->  Ord 
suc  A ) )
64, 5syl 14 . 2  |-  ( A  e.  On  ->  ( suc  A  e.  On  <->  Ord  suc  A
) )
73, 6mpbird 167 1  |-  ( A  e.  On  ->  suc  A  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2167   _Vcvv 2763   Ord word 4397   Oncon0 4398   suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406
This theorem is referenced by:  onsucb  4539  unon  4547  onsuci  4552  ordsucunielexmid  4567  tfrlemisucaccv  6383  tfrexlem  6392  tfri1dALT  6409  rdgisuc1  6442  rdgon  6444  oacl  6518  oasuc  6522  omsuc  6530
  Copyright terms: Public domain W3C validator