ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsuc Unicode version

Theorem onsuc 4550
Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 4565. Forward implication of onsucb 4552. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
onsuc  |-  ( A  e.  On  ->  suc  A  e.  On )

Proof of Theorem onsuc
StepHypRef Expression
1 eloni 4423 . . 3  |-  ( A  e.  On  ->  Ord  A )
2 ordsucim 4549 . . 3  |-  ( Ord 
A  ->  Ord  suc  A
)
31, 2syl 14 . 2  |-  ( A  e.  On  ->  Ord  suc 
A )
4 sucexg 4547 . . 3  |-  ( A  e.  On  ->  suc  A  e.  _V )
5 elong 4421 . . 3  |-  ( suc 
A  e.  _V  ->  ( suc  A  e.  On  <->  Ord 
suc  A ) )
64, 5syl 14 . 2  |-  ( A  e.  On  ->  ( suc  A  e.  On  <->  Ord  suc  A
) )
73, 6mpbird 167 1  |-  ( A  e.  On  ->  suc  A  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2176   _Vcvv 2772   Ord word 4410   Oncon0 4411   suc csuc 4413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-tr 4144  df-iord 4414  df-on 4416  df-suc 4419
This theorem is referenced by:  onsucb  4552  unon  4560  onsuci  4565  ordsucunielexmid  4580  tfrlemisucaccv  6413  tfrexlem  6422  tfri1dALT  6439  rdgisuc1  6472  rdgon  6474  oacl  6548  oasuc  6552  omsuc  6560
  Copyright terms: Public domain W3C validator