ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsuc Unicode version

Theorem onsuc 4502
Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 4517. Forward implication of onsucb 4504. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
onsuc  |-  ( A  e.  On  ->  suc  A  e.  On )

Proof of Theorem onsuc
StepHypRef Expression
1 eloni 4377 . . 3  |-  ( A  e.  On  ->  Ord  A )
2 ordsucim 4501 . . 3  |-  ( Ord 
A  ->  Ord  suc  A
)
31, 2syl 14 . 2  |-  ( A  e.  On  ->  Ord  suc 
A )
4 sucexg 4499 . . 3  |-  ( A  e.  On  ->  suc  A  e.  _V )
5 elong 4375 . . 3  |-  ( suc 
A  e.  _V  ->  ( suc  A  e.  On  <->  Ord 
suc  A ) )
64, 5syl 14 . 2  |-  ( A  e.  On  ->  ( suc  A  e.  On  <->  Ord  suc  A
) )
73, 6mpbird 167 1  |-  ( A  e.  On  ->  suc  A  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2148   _Vcvv 2739   Ord word 4364   Oncon0 4365   suc csuc 4367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-tr 4104  df-iord 4368  df-on 4370  df-suc 4373
This theorem is referenced by:  onsucb  4504  unon  4512  onsuci  4517  ordsucunielexmid  4532  tfrlemisucaccv  6328  tfrexlem  6337  tfri1dALT  6354  rdgisuc1  6387  rdgon  6389  oacl  6463  oasuc  6467  omsuc  6475
  Copyright terms: Public domain W3C validator