ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsuc Unicode version

Theorem onsuc 4593
Description: The successor of an ordinal number is an ordinal number. Closed form of onsuci 4608. Forward implication of onsucb 4595. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
onsuc  |-  ( A  e.  On  ->  suc  A  e.  On )

Proof of Theorem onsuc
StepHypRef Expression
1 eloni 4466 . . 3  |-  ( A  e.  On  ->  Ord  A )
2 ordsucim 4592 . . 3  |-  ( Ord 
A  ->  Ord  suc  A
)
31, 2syl 14 . 2  |-  ( A  e.  On  ->  Ord  suc 
A )
4 sucexg 4590 . . 3  |-  ( A  e.  On  ->  suc  A  e.  _V )
5 elong 4464 . . 3  |-  ( suc 
A  e.  _V  ->  ( suc  A  e.  On  <->  Ord 
suc  A ) )
64, 5syl 14 . 2  |-  ( A  e.  On  ->  ( suc  A  e.  On  <->  Ord  suc  A
) )
73, 6mpbird 167 1  |-  ( A  e.  On  ->  suc  A  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2200   _Vcvv 2799   Ord word 4453   Oncon0 4454   suc csuc 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462
This theorem is referenced by:  onsucb  4595  unon  4603  onsuci  4608  ordsucunielexmid  4623  tfrlemisucaccv  6477  tfrexlem  6486  tfri1dALT  6503  rdgisuc1  6536  rdgon  6538  oacl  6614  oasuc  6618  omsuc  6626
  Copyright terms: Public domain W3C validator