ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucg GIF version

Theorem ordsucg 4515
Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 20-Nov-2018.)
Assertion
Ref Expression
ordsucg (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴))

Proof of Theorem ordsucg
StepHypRef Expression
1 ordsucim 4513 . 2 (Ord 𝐴 → Ord suc 𝐴)
2 sucidg 4430 . . 3 (𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
3 ordelord 4395 . . . 4 ((Ord suc 𝐴𝐴 ∈ suc 𝐴) → Ord 𝐴)
43ex 115 . . 3 (Ord suc 𝐴 → (𝐴 ∈ suc 𝐴 → Ord 𝐴))
52, 4syl5com 29 . 2 (𝐴 ∈ V → (Ord suc 𝐴 → Ord 𝐴))
61, 5impbid2 143 1 (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2159  Vcvv 2751  Ord word 4376  suc csuc 4379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-rex 2473  df-v 2753  df-un 3147  df-in 3149  df-ss 3156  df-sn 3612  df-uni 3824  df-tr 4116  df-iord 4380  df-suc 4385
This theorem is referenced by:  onsucb  4516
  Copyright terms: Public domain W3C validator