| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordsucg | GIF version | ||
| Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 20-Nov-2018.) |
| Ref | Expression |
|---|---|
| ordsucg | ⊢ (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsucim 4536 | . 2 ⊢ (Ord 𝐴 → Ord suc 𝐴) | |
| 2 | sucidg 4451 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | ordelord 4416 | . . . 4 ⊢ ((Ord suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → Ord 𝐴) | |
| 4 | 3 | ex 115 | . . 3 ⊢ (Ord suc 𝐴 → (𝐴 ∈ suc 𝐴 → Ord 𝐴)) |
| 5 | 2, 4 | syl5com 29 | . 2 ⊢ (𝐴 ∈ V → (Ord suc 𝐴 → Ord 𝐴)) |
| 6 | 1, 5 | impbid2 143 | 1 ⊢ (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2167 Vcvv 2763 Ord word 4397 suc csuc 4400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-uni 3840 df-tr 4132 df-iord 4401 df-suc 4406 |
| This theorem is referenced by: onsucb 4539 |
| Copyright terms: Public domain | W3C validator |