Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordsucg | GIF version |
Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 20-Nov-2018.) |
Ref | Expression |
---|---|
ordsucg | ⊢ (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsucim 4477 | . 2 ⊢ (Ord 𝐴 → Ord suc 𝐴) | |
2 | sucidg 4394 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
3 | ordelord 4359 | . . . 4 ⊢ ((Ord suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → Ord 𝐴) | |
4 | 3 | ex 114 | . . 3 ⊢ (Ord suc 𝐴 → (𝐴 ∈ suc 𝐴 → Ord 𝐴)) |
5 | 2, 4 | syl5com 29 | . 2 ⊢ (𝐴 ∈ V → (Ord suc 𝐴 → Ord 𝐴)) |
6 | 1, 5 | impbid2 142 | 1 ⊢ (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 2136 Vcvv 2726 Ord word 4340 suc csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-uni 3790 df-tr 4081 df-iord 4344 df-suc 4349 |
This theorem is referenced by: sucelon 4480 |
Copyright terms: Public domain | W3C validator |