ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucg GIF version

Theorem ordsucg 4534
Description: The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 20-Nov-2018.)
Assertion
Ref Expression
ordsucg (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴))

Proof of Theorem ordsucg
StepHypRef Expression
1 ordsucim 4532 . 2 (Ord 𝐴 → Ord suc 𝐴)
2 sucidg 4447 . . 3 (𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
3 ordelord 4412 . . . 4 ((Ord suc 𝐴𝐴 ∈ suc 𝐴) → Ord 𝐴)
43ex 115 . . 3 (Ord suc 𝐴 → (𝐴 ∈ suc 𝐴 → Ord 𝐴))
52, 4syl5com 29 . 2 (𝐴 ∈ V → (Ord suc 𝐴 → Ord 𝐴))
61, 5impbid2 143 1 (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2164  Vcvv 2760  Ord word 4393  suc csuc 4396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-uni 3836  df-tr 4128  df-iord 4397  df-suc 4402
This theorem is referenced by:  onsucb  4535
  Copyright terms: Public domain W3C validator