ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelord Unicode version

Theorem ordelord 4429
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. (Contributed by NM, 23-Apr-1994.)
Assertion
Ref Expression
ordelord  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )

Proof of Theorem ordelord
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq1 2268 . . . . 5  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
21anbi2d 464 . . . 4  |-  ( x  =  B  ->  (
( Ord  A  /\  x  e.  A )  <->  ( Ord  A  /\  B  e.  A ) ) )
3 ordeq 4420 . . . 4  |-  ( x  =  B  ->  ( Ord  x  <->  Ord  B ) )
42, 3imbi12d 234 . . 3  |-  ( x  =  B  ->  (
( ( Ord  A  /\  x  e.  A
)  ->  Ord  x )  <-> 
( ( Ord  A  /\  B  e.  A
)  ->  Ord  B ) ) )
5 dford3 4415 . . . . . 6  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
65simprbi 275 . . . . 5  |-  ( Ord 
A  ->  A. x  e.  A  Tr  x
)
76r19.21bi 2594 . . . 4  |-  ( ( Ord  A  /\  x  e.  A )  ->  Tr  x )
8 ordelss 4427 . . . 4  |-  ( ( Ord  A  /\  x  e.  A )  ->  x  C_  A )
9 simpl 109 . . . 4  |-  ( ( Ord  A  /\  x  e.  A )  ->  Ord  A )
10 trssord 4428 . . . 4  |-  ( ( Tr  x  /\  x  C_  A  /\  Ord  A
)  ->  Ord  x )
117, 8, 9, 10syl3anc 1250 . . 3  |-  ( ( Ord  A  /\  x  e.  A )  ->  Ord  x )
124, 11vtoclg 2833 . 2  |-  ( B  e.  A  ->  (
( Ord  A  /\  B  e.  A )  ->  Ord  B ) )
1312anabsi7 581 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484    C_ wss 3166   Tr wtr 4143   Ord word 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-in 3172  df-ss 3179  df-uni 3851  df-tr 4144  df-iord 4414
This theorem is referenced by:  tron  4430  ordelon  4431  ordsucg  4551  ordwe  4625  smores  6380
  Copyright terms: Public domain W3C validator