Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordelord | Unicode version |
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. (Contributed by NM, 23-Apr-1994.) |
Ref | Expression |
---|---|
ordelord |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2229 | . . . . 5 | |
2 | 1 | anbi2d 460 | . . . 4 |
3 | ordeq 4350 | . . . 4 | |
4 | 2, 3 | imbi12d 233 | . . 3 |
5 | dford3 4345 | . . . . . 6 | |
6 | 5 | simprbi 273 | . . . . 5 |
7 | 6 | r19.21bi 2554 | . . . 4 |
8 | ordelss 4357 | . . . 4 | |
9 | simpl 108 | . . . 4 | |
10 | trssord 4358 | . . . 4 | |
11 | 7, 8, 9, 10 | syl3anc 1228 | . . 3 |
12 | 4, 11 | vtoclg 2786 | . 2 |
13 | 12 | anabsi7 571 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 wss 3116 wtr 4080 word 4340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 df-tr 4081 df-iord 4344 |
This theorem is referenced by: tron 4360 ordelon 4361 ordsucg 4479 ordwe 4553 smores 6260 |
Copyright terms: Public domain | W3C validator |