ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelord Unicode version

Theorem ordelord 4359
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. (Contributed by NM, 23-Apr-1994.)
Assertion
Ref Expression
ordelord  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )

Proof of Theorem ordelord
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq1 2229 . . . . 5  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
21anbi2d 460 . . . 4  |-  ( x  =  B  ->  (
( Ord  A  /\  x  e.  A )  <->  ( Ord  A  /\  B  e.  A ) ) )
3 ordeq 4350 . . . 4  |-  ( x  =  B  ->  ( Ord  x  <->  Ord  B ) )
42, 3imbi12d 233 . . 3  |-  ( x  =  B  ->  (
( ( Ord  A  /\  x  e.  A
)  ->  Ord  x )  <-> 
( ( Ord  A  /\  B  e.  A
)  ->  Ord  B ) ) )
5 dford3 4345 . . . . . 6  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
65simprbi 273 . . . . 5  |-  ( Ord 
A  ->  A. x  e.  A  Tr  x
)
76r19.21bi 2554 . . . 4  |-  ( ( Ord  A  /\  x  e.  A )  ->  Tr  x )
8 ordelss 4357 . . . 4  |-  ( ( Ord  A  /\  x  e.  A )  ->  x  C_  A )
9 simpl 108 . . . 4  |-  ( ( Ord  A  /\  x  e.  A )  ->  Ord  A )
10 trssord 4358 . . . 4  |-  ( ( Tr  x  /\  x  C_  A  /\  Ord  A
)  ->  Ord  x )
117, 8, 9, 10syl3anc 1228 . . 3  |-  ( ( Ord  A  /\  x  e.  A )  ->  Ord  x )
124, 11vtoclg 2786 . 2  |-  ( B  e.  A  ->  (
( Ord  A  /\  B  e.  A )  ->  Ord  B ) )
1312anabsi7 571 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444    C_ wss 3116   Tr wtr 4080   Ord word 4340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-uni 3790  df-tr 4081  df-iord 4344
This theorem is referenced by:  tron  4360  ordelon  4361  ordsucg  4479  ordwe  4553  smores  6260
  Copyright terms: Public domain W3C validator