ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelord Unicode version

Theorem ordelord 4383
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. (Contributed by NM, 23-Apr-1994.)
Assertion
Ref Expression
ordelord  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )

Proof of Theorem ordelord
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq1 2240 . . . . 5  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
21anbi2d 464 . . . 4  |-  ( x  =  B  ->  (
( Ord  A  /\  x  e.  A )  <->  ( Ord  A  /\  B  e.  A ) ) )
3 ordeq 4374 . . . 4  |-  ( x  =  B  ->  ( Ord  x  <->  Ord  B ) )
42, 3imbi12d 234 . . 3  |-  ( x  =  B  ->  (
( ( Ord  A  /\  x  e.  A
)  ->  Ord  x )  <-> 
( ( Ord  A  /\  B  e.  A
)  ->  Ord  B ) ) )
5 dford3 4369 . . . . . 6  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
65simprbi 275 . . . . 5  |-  ( Ord 
A  ->  A. x  e.  A  Tr  x
)
76r19.21bi 2565 . . . 4  |-  ( ( Ord  A  /\  x  e.  A )  ->  Tr  x )
8 ordelss 4381 . . . 4  |-  ( ( Ord  A  /\  x  e.  A )  ->  x  C_  A )
9 simpl 109 . . . 4  |-  ( ( Ord  A  /\  x  e.  A )  ->  Ord  A )
10 trssord 4382 . . . 4  |-  ( ( Tr  x  /\  x  C_  A  /\  Ord  A
)  ->  Ord  x )
117, 8, 9, 10syl3anc 1238 . . 3  |-  ( ( Ord  A  /\  x  e.  A )  ->  Ord  x )
124, 11vtoclg 2799 . 2  |-  ( B  e.  A  ->  (
( Ord  A  /\  B  e.  A )  ->  Ord  B ) )
1312anabsi7 581 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3131   Tr wtr 4103   Ord word 4364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-in 3137  df-ss 3144  df-uni 3812  df-tr 4104  df-iord 4368
This theorem is referenced by:  tron  4384  ordelon  4385  ordsucg  4503  ordwe  4577  smores  6295
  Copyright terms: Public domain W3C validator