ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nneoor Unicode version

Theorem nneoor 9153
Description: A positive integer is even or odd. (Contributed by Jim Kingdon, 15-Mar-2020.)
Assertion
Ref Expression
nneoor  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN  \/  ( ( N  + 
1 )  /  2
)  e.  NN ) )

Proof of Theorem nneoor
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5781 . . . . . 6  |-  ( j  =  1  ->  (
j  +  1 )  =  ( 1  +  1 ) )
21oveq1d 5789 . . . . 5  |-  ( j  =  1  ->  (
( j  +  1 )  /  2 )  =  ( ( 1  +  1 )  / 
2 ) )
32eleq1d 2208 . . . 4  |-  ( j  =  1  ->  (
( ( j  +  1 )  /  2
)  e.  NN  <->  ( (
1  +  1 )  /  2 )  e.  NN ) )
4 oveq1 5781 . . . . 5  |-  ( j  =  1  ->  (
j  /  2 )  =  ( 1  / 
2 ) )
54eleq1d 2208 . . . 4  |-  ( j  =  1  ->  (
( j  /  2
)  e.  NN  <->  ( 1  /  2 )  e.  NN ) )
63, 5orbi12d 782 . . 3  |-  ( j  =  1  ->  (
( ( ( j  +  1 )  / 
2 )  e.  NN  \/  ( j  /  2
)  e.  NN )  <-> 
( ( ( 1  +  1 )  / 
2 )  e.  NN  \/  ( 1  /  2
)  e.  NN ) ) )
7 oveq1 5781 . . . . . 6  |-  ( j  =  k  ->  (
j  +  1 )  =  ( k  +  1 ) )
87oveq1d 5789 . . . . 5  |-  ( j  =  k  ->  (
( j  +  1 )  /  2 )  =  ( ( k  +  1 )  / 
2 ) )
98eleq1d 2208 . . . 4  |-  ( j  =  k  ->  (
( ( j  +  1 )  /  2
)  e.  NN  <->  ( (
k  +  1 )  /  2 )  e.  NN ) )
10 oveq1 5781 . . . . 5  |-  ( j  =  k  ->  (
j  /  2 )  =  ( k  / 
2 ) )
1110eleq1d 2208 . . . 4  |-  ( j  =  k  ->  (
( j  /  2
)  e.  NN  <->  ( k  /  2 )  e.  NN ) )
129, 11orbi12d 782 . . 3  |-  ( j  =  k  ->  (
( ( ( j  +  1 )  / 
2 )  e.  NN  \/  ( j  /  2
)  e.  NN )  <-> 
( ( ( k  +  1 )  / 
2 )  e.  NN  \/  ( k  /  2
)  e.  NN ) ) )
13 oveq1 5781 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
j  +  1 )  =  ( ( k  +  1 )  +  1 ) )
1413oveq1d 5789 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( j  +  1 )  /  2 )  =  ( ( ( k  +  1 )  +  1 )  / 
2 ) )
1514eleq1d 2208 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( j  +  1 )  /  2
)  e.  NN  <->  ( (
( k  +  1 )  +  1 )  /  2 )  e.  NN ) )
16 oveq1 5781 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
j  /  2 )  =  ( ( k  +  1 )  / 
2 ) )
1716eleq1d 2208 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( j  /  2
)  e.  NN  <->  ( (
k  +  1 )  /  2 )  e.  NN ) )
1815, 17orbi12d 782 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( ( ( j  +  1 )  / 
2 )  e.  NN  \/  ( j  /  2
)  e.  NN )  <-> 
( ( ( ( k  +  1 )  +  1 )  / 
2 )  e.  NN  \/  ( ( k  +  1 )  /  2
)  e.  NN ) ) )
19 oveq1 5781 . . . . . 6  |-  ( j  =  N  ->  (
j  +  1 )  =  ( N  + 
1 ) )
2019oveq1d 5789 . . . . 5  |-  ( j  =  N  ->  (
( j  +  1 )  /  2 )  =  ( ( N  +  1 )  / 
2 ) )
2120eleq1d 2208 . . . 4  |-  ( j  =  N  ->  (
( ( j  +  1 )  /  2
)  e.  NN  <->  ( ( N  +  1 )  /  2 )  e.  NN ) )
22 oveq1 5781 . . . . 5  |-  ( j  =  N  ->  (
j  /  2 )  =  ( N  / 
2 ) )
2322eleq1d 2208 . . . 4  |-  ( j  =  N  ->  (
( j  /  2
)  e.  NN  <->  ( N  /  2 )  e.  NN ) )
2421, 23orbi12d 782 . . 3  |-  ( j  =  N  ->  (
( ( ( j  +  1 )  / 
2 )  e.  NN  \/  ( j  /  2
)  e.  NN )  <-> 
( ( ( N  +  1 )  / 
2 )  e.  NN  \/  ( N  /  2
)  e.  NN ) ) )
25 df-2 8779 . . . . . . 7  |-  2  =  ( 1  +  1 )
2625oveq1i 5784 . . . . . 6  |-  ( 2  /  2 )  =  ( ( 1  +  1 )  /  2
)
27 2div2e1 8852 . . . . . 6  |-  ( 2  /  2 )  =  1
2826, 27eqtr3i 2162 . . . . 5  |-  ( ( 1  +  1 )  /  2 )  =  1
29 1nn 8731 . . . . 5  |-  1  e.  NN
3028, 29eqeltri 2212 . . . 4  |-  ( ( 1  +  1 )  /  2 )  e.  NN
3130orci 720 . . 3  |-  ( ( ( 1  +  1 )  /  2 )  e.  NN  \/  (
1  /  2 )  e.  NN )
32 peano2nn 8732 . . . . . 6  |-  ( ( k  /  2 )  e.  NN  ->  (
( k  /  2
)  +  1 )  e.  NN )
33 nncn 8728 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  CC )
34 add1p1 8969 . . . . . . . . . 10  |-  ( k  e.  CC  ->  (
( k  +  1 )  +  1 )  =  ( k  +  2 ) )
3534oveq1d 5789 . . . . . . . . 9  |-  ( k  e.  CC  ->  (
( ( k  +  1 )  +  1 )  /  2 )  =  ( ( k  +  2 )  / 
2 ) )
36 2cn 8791 . . . . . . . . . . 11  |-  2  e.  CC
37 2ap0 8813 . . . . . . . . . . . 12  |-  2 #  0
3836, 37pm3.2i 270 . . . . . . . . . . 11  |-  ( 2  e.  CC  /\  2 #  0 )
39 divdirap 8457 . . . . . . . . . . 11  |-  ( ( k  e.  CC  /\  2  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( ( k  +  2 )  /  2
)  =  ( ( k  /  2 )  +  ( 2  / 
2 ) ) )
4036, 38, 39mp3an23 1307 . . . . . . . . . 10  |-  ( k  e.  CC  ->  (
( k  +  2 )  /  2 )  =  ( ( k  /  2 )  +  ( 2  /  2
) ) )
4127oveq2i 5785 . . . . . . . . . 10  |-  ( ( k  /  2 )  +  ( 2  / 
2 ) )  =  ( ( k  / 
2 )  +  1 )
4240, 41syl6eq 2188 . . . . . . . . 9  |-  ( k  e.  CC  ->  (
( k  +  2 )  /  2 )  =  ( ( k  /  2 )  +  1 ) )
4335, 42eqtrd 2172 . . . . . . . 8  |-  ( k  e.  CC  ->  (
( ( k  +  1 )  +  1 )  /  2 )  =  ( ( k  /  2 )  +  1 ) )
4433, 43syl 14 . . . . . . 7  |-  ( k  e.  NN  ->  (
( ( k  +  1 )  +  1 )  /  2 )  =  ( ( k  /  2 )  +  1 ) )
4544eleq1d 2208 . . . . . 6  |-  ( k  e.  NN  ->  (
( ( ( k  +  1 )  +  1 )  /  2
)  e.  NN  <->  ( (
k  /  2 )  +  1 )  e.  NN ) )
4632, 45syl5ibr 155 . . . . 5  |-  ( k  e.  NN  ->  (
( k  /  2
)  e.  NN  ->  ( ( ( k  +  1 )  +  1 )  /  2 )  e.  NN ) )
4746orim2d 777 . . . 4  |-  ( k  e.  NN  ->  (
( ( ( k  +  1 )  / 
2 )  e.  NN  \/  ( k  /  2
)  e.  NN )  ->  ( ( ( k  +  1 )  /  2 )  e.  NN  \/  ( ( ( k  +  1 )  +  1 )  /  2 )  e.  NN ) ) )
48 orcom 717 . . . 4  |-  ( ( ( ( k  +  1 )  /  2
)  e.  NN  \/  ( ( ( k  +  1 )  +  1 )  /  2
)  e.  NN )  <-> 
( ( ( ( k  +  1 )  +  1 )  / 
2 )  e.  NN  \/  ( ( k  +  1 )  /  2
)  e.  NN ) )
4947, 48syl6ib 160 . . 3  |-  ( k  e.  NN  ->  (
( ( ( k  +  1 )  / 
2 )  e.  NN  \/  ( k  /  2
)  e.  NN )  ->  ( ( ( ( k  +  1 )  +  1 )  /  2 )  e.  NN  \/  ( ( k  +  1 )  /  2 )  e.  NN ) ) )
506, 12, 18, 24, 31, 49nnind 8736 . 2  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  2
)  e.  NN  \/  ( N  /  2
)  e.  NN ) )
5150orcomd 718 1  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN  \/  ( ( N  + 
1 )  /  2
)  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 697    = wceq 1331    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621    + caddc 7623   # cap 8343    / cdiv 8432   NNcn 8720   2c2 8771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779
This theorem is referenced by:  nneo  9154  zeo  9156
  Copyright terms: Public domain W3C validator