ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nneoor Unicode version

Theorem nneoor 9428
Description: A positive integer is even or odd. (Contributed by Jim Kingdon, 15-Mar-2020.)
Assertion
Ref Expression
nneoor  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN  \/  ( ( N  + 
1 )  /  2
)  e.  NN ) )

Proof of Theorem nneoor
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5929 . . . . . 6  |-  ( j  =  1  ->  (
j  +  1 )  =  ( 1  +  1 ) )
21oveq1d 5937 . . . . 5  |-  ( j  =  1  ->  (
( j  +  1 )  /  2 )  =  ( ( 1  +  1 )  / 
2 ) )
32eleq1d 2265 . . . 4  |-  ( j  =  1  ->  (
( ( j  +  1 )  /  2
)  e.  NN  <->  ( (
1  +  1 )  /  2 )  e.  NN ) )
4 oveq1 5929 . . . . 5  |-  ( j  =  1  ->  (
j  /  2 )  =  ( 1  / 
2 ) )
54eleq1d 2265 . . . 4  |-  ( j  =  1  ->  (
( j  /  2
)  e.  NN  <->  ( 1  /  2 )  e.  NN ) )
63, 5orbi12d 794 . . 3  |-  ( j  =  1  ->  (
( ( ( j  +  1 )  / 
2 )  e.  NN  \/  ( j  /  2
)  e.  NN )  <-> 
( ( ( 1  +  1 )  / 
2 )  e.  NN  \/  ( 1  /  2
)  e.  NN ) ) )
7 oveq1 5929 . . . . . 6  |-  ( j  =  k  ->  (
j  +  1 )  =  ( k  +  1 ) )
87oveq1d 5937 . . . . 5  |-  ( j  =  k  ->  (
( j  +  1 )  /  2 )  =  ( ( k  +  1 )  / 
2 ) )
98eleq1d 2265 . . . 4  |-  ( j  =  k  ->  (
( ( j  +  1 )  /  2
)  e.  NN  <->  ( (
k  +  1 )  /  2 )  e.  NN ) )
10 oveq1 5929 . . . . 5  |-  ( j  =  k  ->  (
j  /  2 )  =  ( k  / 
2 ) )
1110eleq1d 2265 . . . 4  |-  ( j  =  k  ->  (
( j  /  2
)  e.  NN  <->  ( k  /  2 )  e.  NN ) )
129, 11orbi12d 794 . . 3  |-  ( j  =  k  ->  (
( ( ( j  +  1 )  / 
2 )  e.  NN  \/  ( j  /  2
)  e.  NN )  <-> 
( ( ( k  +  1 )  / 
2 )  e.  NN  \/  ( k  /  2
)  e.  NN ) ) )
13 oveq1 5929 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
j  +  1 )  =  ( ( k  +  1 )  +  1 ) )
1413oveq1d 5937 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( j  +  1 )  /  2 )  =  ( ( ( k  +  1 )  +  1 )  / 
2 ) )
1514eleq1d 2265 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( j  +  1 )  /  2
)  e.  NN  <->  ( (
( k  +  1 )  +  1 )  /  2 )  e.  NN ) )
16 oveq1 5929 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
j  /  2 )  =  ( ( k  +  1 )  / 
2 ) )
1716eleq1d 2265 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( j  /  2
)  e.  NN  <->  ( (
k  +  1 )  /  2 )  e.  NN ) )
1815, 17orbi12d 794 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( ( ( j  +  1 )  / 
2 )  e.  NN  \/  ( j  /  2
)  e.  NN )  <-> 
( ( ( ( k  +  1 )  +  1 )  / 
2 )  e.  NN  \/  ( ( k  +  1 )  /  2
)  e.  NN ) ) )
19 oveq1 5929 . . . . . 6  |-  ( j  =  N  ->  (
j  +  1 )  =  ( N  + 
1 ) )
2019oveq1d 5937 . . . . 5  |-  ( j  =  N  ->  (
( j  +  1 )  /  2 )  =  ( ( N  +  1 )  / 
2 ) )
2120eleq1d 2265 . . . 4  |-  ( j  =  N  ->  (
( ( j  +  1 )  /  2
)  e.  NN  <->  ( ( N  +  1 )  /  2 )  e.  NN ) )
22 oveq1 5929 . . . . 5  |-  ( j  =  N  ->  (
j  /  2 )  =  ( N  / 
2 ) )
2322eleq1d 2265 . . . 4  |-  ( j  =  N  ->  (
( j  /  2
)  e.  NN  <->  ( N  /  2 )  e.  NN ) )
2421, 23orbi12d 794 . . 3  |-  ( j  =  N  ->  (
( ( ( j  +  1 )  / 
2 )  e.  NN  \/  ( j  /  2
)  e.  NN )  <-> 
( ( ( N  +  1 )  / 
2 )  e.  NN  \/  ( N  /  2
)  e.  NN ) ) )
25 df-2 9049 . . . . . . 7  |-  2  =  ( 1  +  1 )
2625oveq1i 5932 . . . . . 6  |-  ( 2  /  2 )  =  ( ( 1  +  1 )  /  2
)
27 2div2e1 9123 . . . . . 6  |-  ( 2  /  2 )  =  1
2826, 27eqtr3i 2219 . . . . 5  |-  ( ( 1  +  1 )  /  2 )  =  1
29 1nn 9001 . . . . 5  |-  1  e.  NN
3028, 29eqeltri 2269 . . . 4  |-  ( ( 1  +  1 )  /  2 )  e.  NN
3130orci 732 . . 3  |-  ( ( ( 1  +  1 )  /  2 )  e.  NN  \/  (
1  /  2 )  e.  NN )
32 peano2nn 9002 . . . . . 6  |-  ( ( k  /  2 )  e.  NN  ->  (
( k  /  2
)  +  1 )  e.  NN )
33 nncn 8998 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  CC )
34 add1p1 9241 . . . . . . . . . 10  |-  ( k  e.  CC  ->  (
( k  +  1 )  +  1 )  =  ( k  +  2 ) )
3534oveq1d 5937 . . . . . . . . 9  |-  ( k  e.  CC  ->  (
( ( k  +  1 )  +  1 )  /  2 )  =  ( ( k  +  2 )  / 
2 ) )
36 2cn 9061 . . . . . . . . . . 11  |-  2  e.  CC
37 2ap0 9083 . . . . . . . . . . . 12  |-  2 #  0
3836, 37pm3.2i 272 . . . . . . . . . . 11  |-  ( 2  e.  CC  /\  2 #  0 )
39 divdirap 8724 . . . . . . . . . . 11  |-  ( ( k  e.  CC  /\  2  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( ( k  +  2 )  /  2
)  =  ( ( k  /  2 )  +  ( 2  / 
2 ) ) )
4036, 38, 39mp3an23 1340 . . . . . . . . . 10  |-  ( k  e.  CC  ->  (
( k  +  2 )  /  2 )  =  ( ( k  /  2 )  +  ( 2  /  2
) ) )
4127oveq2i 5933 . . . . . . . . . 10  |-  ( ( k  /  2 )  +  ( 2  / 
2 ) )  =  ( ( k  / 
2 )  +  1 )
4240, 41eqtrdi 2245 . . . . . . . . 9  |-  ( k  e.  CC  ->  (
( k  +  2 )  /  2 )  =  ( ( k  /  2 )  +  1 ) )
4335, 42eqtrd 2229 . . . . . . . 8  |-  ( k  e.  CC  ->  (
( ( k  +  1 )  +  1 )  /  2 )  =  ( ( k  /  2 )  +  1 ) )
4433, 43syl 14 . . . . . . 7  |-  ( k  e.  NN  ->  (
( ( k  +  1 )  +  1 )  /  2 )  =  ( ( k  /  2 )  +  1 ) )
4544eleq1d 2265 . . . . . 6  |-  ( k  e.  NN  ->  (
( ( ( k  +  1 )  +  1 )  /  2
)  e.  NN  <->  ( (
k  /  2 )  +  1 )  e.  NN ) )
4632, 45imbitrrid 156 . . . . 5  |-  ( k  e.  NN  ->  (
( k  /  2
)  e.  NN  ->  ( ( ( k  +  1 )  +  1 )  /  2 )  e.  NN ) )
4746orim2d 789 . . . 4  |-  ( k  e.  NN  ->  (
( ( ( k  +  1 )  / 
2 )  e.  NN  \/  ( k  /  2
)  e.  NN )  ->  ( ( ( k  +  1 )  /  2 )  e.  NN  \/  ( ( ( k  +  1 )  +  1 )  /  2 )  e.  NN ) ) )
48 orcom 729 . . . 4  |-  ( ( ( ( k  +  1 )  /  2
)  e.  NN  \/  ( ( ( k  +  1 )  +  1 )  /  2
)  e.  NN )  <-> 
( ( ( ( k  +  1 )  +  1 )  / 
2 )  e.  NN  \/  ( ( k  +  1 )  /  2
)  e.  NN ) )
4947, 48imbitrdi 161 . . 3  |-  ( k  e.  NN  ->  (
( ( ( k  +  1 )  / 
2 )  e.  NN  \/  ( k  /  2
)  e.  NN )  ->  ( ( ( ( k  +  1 )  +  1 )  /  2 )  e.  NN  \/  ( ( k  +  1 )  /  2 )  e.  NN ) ) )
506, 12, 18, 24, 31, 49nnind 9006 . 2  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  2
)  e.  NN  \/  ( N  /  2
)  e.  NN ) )
5150orcomd 730 1  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN  \/  ( ( N  + 
1 )  /  2
)  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   CCcc 7877   0cc0 7879   1c1 7880    + caddc 7882   # cap 8608    / cdiv 8699   NNcn 8990   2c2 9041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049
This theorem is referenced by:  nneo  9429  zeo  9431
  Copyright terms: Public domain W3C validator