Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nneoor | Unicode version |
Description: A positive integer is even or odd. (Contributed by Jim Kingdon, 15-Mar-2020.) |
Ref | Expression |
---|---|
nneoor |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5849 | . . . . . 6 | |
2 | 1 | oveq1d 5857 | . . . . 5 |
3 | 2 | eleq1d 2235 | . . . 4 |
4 | oveq1 5849 | . . . . 5 | |
5 | 4 | eleq1d 2235 | . . . 4 |
6 | 3, 5 | orbi12d 783 | . . 3 |
7 | oveq1 5849 | . . . . . 6 | |
8 | 7 | oveq1d 5857 | . . . . 5 |
9 | 8 | eleq1d 2235 | . . . 4 |
10 | oveq1 5849 | . . . . 5 | |
11 | 10 | eleq1d 2235 | . . . 4 |
12 | 9, 11 | orbi12d 783 | . . 3 |
13 | oveq1 5849 | . . . . . 6 | |
14 | 13 | oveq1d 5857 | . . . . 5 |
15 | 14 | eleq1d 2235 | . . . 4 |
16 | oveq1 5849 | . . . . 5 | |
17 | 16 | eleq1d 2235 | . . . 4 |
18 | 15, 17 | orbi12d 783 | . . 3 |
19 | oveq1 5849 | . . . . . 6 | |
20 | 19 | oveq1d 5857 | . . . . 5 |
21 | 20 | eleq1d 2235 | . . . 4 |
22 | oveq1 5849 | . . . . 5 | |
23 | 22 | eleq1d 2235 | . . . 4 |
24 | 21, 23 | orbi12d 783 | . . 3 |
25 | df-2 8916 | . . . . . . 7 | |
26 | 25 | oveq1i 5852 | . . . . . 6 |
27 | 2div2e1 8989 | . . . . . 6 | |
28 | 26, 27 | eqtr3i 2188 | . . . . 5 |
29 | 1nn 8868 | . . . . 5 | |
30 | 28, 29 | eqeltri 2239 | . . . 4 |
31 | 30 | orci 721 | . . 3 |
32 | peano2nn 8869 | . . . . . 6 | |
33 | nncn 8865 | . . . . . . . 8 | |
34 | add1p1 9106 | . . . . . . . . . 10 | |
35 | 34 | oveq1d 5857 | . . . . . . . . 9 |
36 | 2cn 8928 | . . . . . . . . . . 11 | |
37 | 2ap0 8950 | . . . . . . . . . . . 12 # | |
38 | 36, 37 | pm3.2i 270 | . . . . . . . . . . 11 # |
39 | divdirap 8593 | . . . . . . . . . . 11 # | |
40 | 36, 38, 39 | mp3an23 1319 | . . . . . . . . . 10 |
41 | 27 | oveq2i 5853 | . . . . . . . . . 10 |
42 | 40, 41 | eqtrdi 2215 | . . . . . . . . 9 |
43 | 35, 42 | eqtrd 2198 | . . . . . . . 8 |
44 | 33, 43 | syl 14 | . . . . . . 7 |
45 | 44 | eleq1d 2235 | . . . . . 6 |
46 | 32, 45 | syl5ibr 155 | . . . . 5 |
47 | 46 | orim2d 778 | . . . 4 |
48 | orcom 718 | . . . 4 | |
49 | 47, 48 | syl6ib 160 | . . 3 |
50 | 6, 12, 18, 24, 31, 49 | nnind 8873 | . 2 |
51 | 50 | orcomd 719 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wceq 1343 wcel 2136 class class class wbr 3982 (class class class)co 5842 cc 7751 cc0 7753 c1 7754 caddc 7756 # cap 8479 cdiv 8568 cn 8857 c2 8908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 |
This theorem is referenced by: nneo 9294 zeo 9296 |
Copyright terms: Public domain | W3C validator |