Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sbthomlem Unicode version

Theorem sbthomlem 14057
Description: Lemma for sbthom 14058. (Contributed by Mario Carneiro and Jim Kingdon, 13-Jul-2023.)
Hypotheses
Ref Expression
sbthomlem.lpo  |-  ( ph  ->  om  e. Omni )
sbthomlem.y  |-  ( ph  ->  Y  C_  { (/) } )
sbthomlem.f  |-  ( ph  ->  F : om -1-1-onto-> ( Y om )
)
Assertion
Ref Expression
sbthomlem  |-  ( ph  ->  ( Y  =  (/)  \/  Y  =  { (/) } ) )

Proof of Theorem sbthomlem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbthomlem.lpo . . . 4  |-  ( ph  ->  om  e. Omni )
2 sbthomlem.f . . . . 5  |-  ( ph  ->  F : om -1-1-onto-> ( Y om )
)
3 f1ofo 5449 . . . . 5  |-  ( F : om -1-1-onto-> ( Y om )  ->  F : om -onto-> ( Y om ) )
42, 3syl 14 . . . 4  |-  ( ph  ->  F : om -onto-> ( Y om ) )
51, 4fodjuomni 7125 . . 3  |-  ( ph  ->  ( E. z  z  e.  Y  \/  Y  =  (/) ) )
65orcomd 724 . 2  |-  ( ph  ->  ( Y  =  (/)  \/ 
E. z  z  e.  Y ) )
7 sbthomlem.y . . . 4  |-  ( ph  ->  Y  C_  { (/) } )
8 sssnm 3741 . . . 4  |-  ( E. z  z  e.  Y  ->  ( Y  C_  { (/) }  <-> 
Y  =  { (/) } ) )
97, 8syl5ibcom 154 . . 3  |-  ( ph  ->  ( E. z  z  e.  Y  ->  Y  =  { (/) } ) )
109orim2d 783 . 2  |-  ( ph  ->  ( ( Y  =  (/)  \/  E. z  z  e.  Y )  -> 
( Y  =  (/)  \/  Y  =  { (/) } ) ) )
116, 10mpd 13 1  |-  ( ph  ->  ( Y  =  (/)  \/  Y  =  { (/) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 703    = wceq 1348   E.wex 1485    e. wcel 2141    C_ wss 3121   (/)c0 3414   {csn 3583   omcom 4574   -onto->wfo 5196   -1-1-onto->wf1o 5197   ⊔ cdju 7014  Omnicomni 7110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-1o 6395  df-2o 6396  df-map 6628  df-dju 7015  df-inl 7024  df-inr 7025  df-omni 7111
This theorem is referenced by:  sbthom  14058
  Copyright terms: Public domain W3C validator