ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuomnilemdc Unicode version

Theorem fodjuomnilemdc 7108
Description: Lemma for fodjuomni 7113. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.)
Hypothesis
Ref Expression
fodjuomnilemdc.fo  |-  ( ph  ->  F : O -onto-> ( A B ) )
Assertion
Ref Expression
fodjuomnilemdc  |-  ( (
ph  /\  X  e.  O )  -> DECID  E. z  e.  A  ( F `  X )  =  (inl `  z
) )
Distinct variable groups:    z, A    z, B    z, F    z, O    z, X    ph, z

Proof of Theorem fodjuomnilemdc
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fodjuomnilemdc.fo . . . . . 6  |-  ( ph  ->  F : O -onto-> ( A B ) )
2 fof 5410 . . . . . 6  |-  ( F : O -onto-> ( A B )  ->  F : O --> ( A B ) )
31, 2syl 14 . . . . 5  |-  ( ph  ->  F : O --> ( A B ) )
43ffvelrnda 5620 . . . 4  |-  ( (
ph  /\  X  e.  O )  ->  ( F `  X )  e.  ( A B )
)
5 djur 7034 . . . 4  |-  ( ( F `  X )  e.  ( A B )  <-> 
( E. z  e.  A  ( F `  X )  =  (inl
`  z )  \/ 
E. z  e.  B  ( F `  X )  =  (inr `  z
) ) )
64, 5sylib 121 . . 3  |-  ( (
ph  /\  X  e.  O )  ->  ( E. z  e.  A  ( F `  X )  =  (inl `  z
)  \/  E. z  e.  B  ( F `  X )  =  (inr
`  z ) ) )
7 nfv 1516 . . . . . . . 8  |-  F/ z ( ph  /\  X  e.  O )
8 nfre1 2509 . . . . . . . 8  |-  F/ z E. z  e.  B  ( F `  X )  =  (inr `  z
)
97, 8nfan 1553 . . . . . . 7  |-  F/ z ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z
) )
10 simpr 109 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  E. z  e.  B  ( F `  X )  =  (inr
`  z ) )
11 fveq2 5486 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (inr `  z )  =  (inr
`  w ) )
1211eqeq2d 2177 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( F `  X
)  =  (inr `  z )  <->  ( F `  X )  =  (inr
`  w ) ) )
1312cbvrexv 2693 . . . . . . . . . 10  |-  ( E. z  e.  B  ( F `  X )  =  (inr `  z
)  <->  E. w  e.  B  ( F `  X )  =  (inr `  w
) )
1410, 13sylib 121 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  E. w  e.  B  ( F `  X )  =  (inr
`  w ) )
15 vex 2729 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
16 vex 2729 . . . . . . . . . . . . . . 15  |-  w  e. 
_V
17 djune 7043 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  _V  /\  w  e.  _V )  ->  (inl `  z )  =/=  (inr `  w )
)
1815, 16, 17mp2an 423 . . . . . . . . . . . . . 14  |-  (inl `  z )  =/=  (inr `  w )
19 neeq2 2350 . . . . . . . . . . . . . 14  |-  ( ( F `  X )  =  (inr `  w
)  ->  ( (inl `  z )  =/=  ( F `  X )  <->  (inl
`  z )  =/=  (inr `  w )
) )
2018, 19mpbiri 167 . . . . . . . . . . . . 13  |-  ( ( F `  X )  =  (inr `  w
)  ->  (inl `  z
)  =/=  ( F `
 X ) )
2120necomd 2422 . . . . . . . . . . . 12  |-  ( ( F `  X )  =  (inr `  w
)  ->  ( F `  X )  =/=  (inl `  z ) )
2221neneqd 2357 . . . . . . . . . . 11  |-  ( ( F `  X )  =  (inr `  w
)  ->  -.  ( F `  X )  =  (inl `  z )
)
2322a1i 9 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  ( ( F `  X )  =  (inr `  w )  ->  -.  ( F `  X )  =  (inl
`  z ) ) )
2423rexlimdvw 2587 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  ( E. w  e.  B  ( F `  X )  =  (inr `  w )  ->  -.  ( F `  X )  =  (inl
`  z ) ) )
2514, 24mpd 13 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  -.  ( F `  X )  =  (inl `  z )
)
2625a1d 22 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  ( z  e.  A  ->  -.  ( F `  X )  =  (inl `  z )
) )
279, 26ralrimi 2537 . . . . . 6  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  A. z  e.  A  -.  ( F `  X )  =  (inl `  z )
)
28 ralnex 2454 . . . . . 6  |-  ( A. z  e.  A  -.  ( F `  X )  =  (inl `  z
)  <->  -.  E. z  e.  A  ( F `  X )  =  (inl
`  z ) )
2927, 28sylib 121 . . . . 5  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  -.  E. z  e.  A  ( F `  X )  =  (inl
`  z ) )
3029ex 114 . . . 4  |-  ( (
ph  /\  X  e.  O )  ->  ( E. z  e.  B  ( F `  X )  =  (inr `  z
)  ->  -.  E. z  e.  A  ( F `  X )  =  (inl
`  z ) ) )
3130orim2d 778 . . 3  |-  ( (
ph  /\  X  e.  O )  ->  (
( E. z  e.  A  ( F `  X )  =  (inl
`  z )  \/ 
E. z  e.  B  ( F `  X )  =  (inr `  z
) )  ->  ( E. z  e.  A  ( F `  X )  =  (inl `  z
)  \/  -.  E. z  e.  A  ( F `  X )  =  (inl `  z )
) ) )
326, 31mpd 13 . 2  |-  ( (
ph  /\  X  e.  O )  ->  ( E. z  e.  A  ( F `  X )  =  (inl `  z
)  \/  -.  E. z  e.  A  ( F `  X )  =  (inl `  z )
) )
33 df-dc 825 . 2  |-  (DECID  E. z  e.  A  ( F `  X )  =  (inl
`  z )  <->  ( E. z  e.  A  ( F `  X )  =  (inl `  z )  \/  -.  E. z  e.  A  ( F `  X )  =  (inl
`  z ) ) )
3432, 33sylibr 133 1  |-  ( (
ph  /\  X  e.  O )  -> DECID  E. z  e.  A  ( F `  X )  =  (inl `  z
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    = wceq 1343    e. wcel 2136    =/= wne 2336   A.wral 2444   E.wrex 2445   _Vcvv 2726   -->wf 5184   -onto->wfo 5186   ` cfv 5188   ⊔ cdju 7002  inlcinl 7010  inrcinr 7011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-dju 7003  df-inl 7012  df-inr 7013
This theorem is referenced by:  fodjuf  7109  fodjum  7110  fodju0  7111
  Copyright terms: Public domain W3C validator