ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuomnilemdc Unicode version

Theorem fodjuomnilemdc 7120
Description: Lemma for fodjuomni 7125. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.)
Hypothesis
Ref Expression
fodjuomnilemdc.fo  |-  ( ph  ->  F : O -onto-> ( A B ) )
Assertion
Ref Expression
fodjuomnilemdc  |-  ( (
ph  /\  X  e.  O )  -> DECID  E. z  e.  A  ( F `  X )  =  (inl `  z
) )
Distinct variable groups:    z, A    z, B    z, F    z, O    z, X    ph, z

Proof of Theorem fodjuomnilemdc
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fodjuomnilemdc.fo . . . . . 6  |-  ( ph  ->  F : O -onto-> ( A B ) )
2 fof 5420 . . . . . 6  |-  ( F : O -onto-> ( A B )  ->  F : O --> ( A B ) )
31, 2syl 14 . . . . 5  |-  ( ph  ->  F : O --> ( A B ) )
43ffvelrnda 5631 . . . 4  |-  ( (
ph  /\  X  e.  O )  ->  ( F `  X )  e.  ( A B )
)
5 djur 7046 . . . 4  |-  ( ( F `  X )  e.  ( A B )  <-> 
( E. z  e.  A  ( F `  X )  =  (inl
`  z )  \/ 
E. z  e.  B  ( F `  X )  =  (inr `  z
) ) )
64, 5sylib 121 . . 3  |-  ( (
ph  /\  X  e.  O )  ->  ( E. z  e.  A  ( F `  X )  =  (inl `  z
)  \/  E. z  e.  B  ( F `  X )  =  (inr
`  z ) ) )
7 nfv 1521 . . . . . . . 8  |-  F/ z ( ph  /\  X  e.  O )
8 nfre1 2513 . . . . . . . 8  |-  F/ z E. z  e.  B  ( F `  X )  =  (inr `  z
)
97, 8nfan 1558 . . . . . . 7  |-  F/ z ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z
) )
10 simpr 109 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  E. z  e.  B  ( F `  X )  =  (inr
`  z ) )
11 fveq2 5496 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (inr `  z )  =  (inr
`  w ) )
1211eqeq2d 2182 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( F `  X
)  =  (inr `  z )  <->  ( F `  X )  =  (inr
`  w ) ) )
1312cbvrexv 2697 . . . . . . . . . 10  |-  ( E. z  e.  B  ( F `  X )  =  (inr `  z
)  <->  E. w  e.  B  ( F `  X )  =  (inr `  w
) )
1410, 13sylib 121 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  E. w  e.  B  ( F `  X )  =  (inr
`  w ) )
15 vex 2733 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
16 vex 2733 . . . . . . . . . . . . . . 15  |-  w  e. 
_V
17 djune 7055 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  _V  /\  w  e.  _V )  ->  (inl `  z )  =/=  (inr `  w )
)
1815, 16, 17mp2an 424 . . . . . . . . . . . . . 14  |-  (inl `  z )  =/=  (inr `  w )
19 neeq2 2354 . . . . . . . . . . . . . 14  |-  ( ( F `  X )  =  (inr `  w
)  ->  ( (inl `  z )  =/=  ( F `  X )  <->  (inl
`  z )  =/=  (inr `  w )
) )
2018, 19mpbiri 167 . . . . . . . . . . . . 13  |-  ( ( F `  X )  =  (inr `  w
)  ->  (inl `  z
)  =/=  ( F `
 X ) )
2120necomd 2426 . . . . . . . . . . . 12  |-  ( ( F `  X )  =  (inr `  w
)  ->  ( F `  X )  =/=  (inl `  z ) )
2221neneqd 2361 . . . . . . . . . . 11  |-  ( ( F `  X )  =  (inr `  w
)  ->  -.  ( F `  X )  =  (inl `  z )
)
2322a1i 9 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  ( ( F `  X )  =  (inr `  w )  ->  -.  ( F `  X )  =  (inl
`  z ) ) )
2423rexlimdvw 2591 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  ( E. w  e.  B  ( F `  X )  =  (inr `  w )  ->  -.  ( F `  X )  =  (inl
`  z ) ) )
2514, 24mpd 13 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  -.  ( F `  X )  =  (inl `  z )
)
2625a1d 22 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  ( z  e.  A  ->  -.  ( F `  X )  =  (inl `  z )
) )
279, 26ralrimi 2541 . . . . . 6  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  A. z  e.  A  -.  ( F `  X )  =  (inl `  z )
)
28 ralnex 2458 . . . . . 6  |-  ( A. z  e.  A  -.  ( F `  X )  =  (inl `  z
)  <->  -.  E. z  e.  A  ( F `  X )  =  (inl
`  z ) )
2927, 28sylib 121 . . . . 5  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  -.  E. z  e.  A  ( F `  X )  =  (inl
`  z ) )
3029ex 114 . . . 4  |-  ( (
ph  /\  X  e.  O )  ->  ( E. z  e.  B  ( F `  X )  =  (inr `  z
)  ->  -.  E. z  e.  A  ( F `  X )  =  (inl
`  z ) ) )
3130orim2d 783 . . 3  |-  ( (
ph  /\  X  e.  O )  ->  (
( E. z  e.  A  ( F `  X )  =  (inl
`  z )  \/ 
E. z  e.  B  ( F `  X )  =  (inr `  z
) )  ->  ( E. z  e.  A  ( F `  X )  =  (inl `  z
)  \/  -.  E. z  e.  A  ( F `  X )  =  (inl `  z )
) ) )
326, 31mpd 13 . 2  |-  ( (
ph  /\  X  e.  O )  ->  ( E. z  e.  A  ( F `  X )  =  (inl `  z
)  \/  -.  E. z  e.  A  ( F `  X )  =  (inl `  z )
) )
33 df-dc 830 . 2  |-  (DECID  E. z  e.  A  ( F `  X )  =  (inl
`  z )  <->  ( E. z  e.  A  ( F `  X )  =  (inl `  z )  \/  -.  E. z  e.  A  ( F `  X )  =  (inl
`  z ) ) )
3432, 33sylibr 133 1  |-  ( (
ph  /\  X  e.  O )  -> DECID  E. z  e.  A  ( F `  X )  =  (inl `  z
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141    =/= wne 2340   A.wral 2448   E.wrex 2449   _Vcvv 2730   -->wf 5194   -onto->wfo 5196   ` cfv 5198   ⊔ cdju 7014  inlcinl 7022  inrcinr 7023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-dju 7015  df-inl 7024  df-inr 7025
This theorem is referenced by:  fodjuf  7121  fodjum  7122  fodju0  7123
  Copyright terms: Public domain W3C validator