| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodjuomnilemdc | Unicode version | ||
| Description: Lemma for fodjuomni 7312. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.) |
| Ref | Expression |
|---|---|
| fodjuomnilemdc.fo |
|
| Ref | Expression |
|---|---|
| fodjuomnilemdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fodjuomnilemdc.fo |
. . . . . 6
| |
| 2 | fof 5547 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | 3 | ffvelcdmda 5769 |
. . . 4
|
| 5 | djur 7232 |
. . . 4
| |
| 6 | 4, 5 | sylib 122 |
. . 3
|
| 7 | nfv 1574 |
. . . . . . . 8
| |
| 8 | nfre1 2573 |
. . . . . . . 8
| |
| 9 | 7, 8 | nfan 1611 |
. . . . . . 7
|
| 10 | simpr 110 |
. . . . . . . . . 10
| |
| 11 | fveq2 5626 |
. . . . . . . . . . . 12
| |
| 12 | 11 | eqeq2d 2241 |
. . . . . . . . . . 11
|
| 13 | 12 | cbvrexv 2766 |
. . . . . . . . . 10
|
| 14 | 10, 13 | sylib 122 |
. . . . . . . . 9
|
| 15 | vex 2802 |
. . . . . . . . . . . . . . 15
| |
| 16 | vex 2802 |
. . . . . . . . . . . . . . 15
| |
| 17 | djune 7241 |
. . . . . . . . . . . . . . 15
| |
| 18 | 15, 16, 17 | mp2an 426 |
. . . . . . . . . . . . . 14
|
| 19 | neeq2 2414 |
. . . . . . . . . . . . . 14
| |
| 20 | 18, 19 | mpbiri 168 |
. . . . . . . . . . . . 13
|
| 21 | 20 | necomd 2486 |
. . . . . . . . . . . 12
|
| 22 | 21 | neneqd 2421 |
. . . . . . . . . . 11
|
| 23 | 22 | a1i 9 |
. . . . . . . . . 10
|
| 24 | 23 | rexlimdvw 2652 |
. . . . . . . . 9
|
| 25 | 14, 24 | mpd 13 |
. . . . . . . 8
|
| 26 | 25 | a1d 22 |
. . . . . . 7
|
| 27 | 9, 26 | ralrimi 2601 |
. . . . . 6
|
| 28 | ralnex 2518 |
. . . . . 6
| |
| 29 | 27, 28 | sylib 122 |
. . . . 5
|
| 30 | 29 | ex 115 |
. . . 4
|
| 31 | 30 | orim2d 793 |
. . 3
|
| 32 | 6, 31 | mpd 13 |
. 2
|
| 33 | df-dc 840 |
. 2
| |
| 34 | 32, 33 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1st 6284 df-2nd 6285 df-1o 6560 df-dju 7201 df-inl 7210 df-inr 7211 |
| This theorem is referenced by: fodjuf 7308 fodjum 7309 fodju0 7310 |
| Copyright terms: Public domain | W3C validator |