Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fodjuomnilemdc | Unicode version |
Description: Lemma for fodjuomni 7125. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.) |
Ref | Expression |
---|---|
fodjuomnilemdc.fo | ⊔ |
Ref | Expression |
---|---|
fodjuomnilemdc | DECID inl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fodjuomnilemdc.fo | . . . . . 6 ⊔ | |
2 | fof 5420 | . . . . . 6 ⊔ ⊔ | |
3 | 1, 2 | syl 14 | . . . . 5 ⊔ |
4 | 3 | ffvelrnda 5631 | . . . 4 ⊔ |
5 | djur 7046 | . . . 4 ⊔ inl inr | |
6 | 4, 5 | sylib 121 | . . 3 inl inr |
7 | nfv 1521 | . . . . . . . 8 | |
8 | nfre1 2513 | . . . . . . . 8 inr | |
9 | 7, 8 | nfan 1558 | . . . . . . 7 inr |
10 | simpr 109 | . . . . . . . . . 10 inr inr | |
11 | fveq2 5496 | . . . . . . . . . . . 12 inr inr | |
12 | 11 | eqeq2d 2182 | . . . . . . . . . . 11 inr inr |
13 | 12 | cbvrexv 2697 | . . . . . . . . . 10 inr inr |
14 | 10, 13 | sylib 121 | . . . . . . . . 9 inr inr |
15 | vex 2733 | . . . . . . . . . . . . . . 15 | |
16 | vex 2733 | . . . . . . . . . . . . . . 15 | |
17 | djune 7055 | . . . . . . . . . . . . . . 15 inl inr | |
18 | 15, 16, 17 | mp2an 424 | . . . . . . . . . . . . . 14 inl inr |
19 | neeq2 2354 | . . . . . . . . . . . . . 14 inr inl inl inr | |
20 | 18, 19 | mpbiri 167 | . . . . . . . . . . . . 13 inr inl |
21 | 20 | necomd 2426 | . . . . . . . . . . . 12 inr inl |
22 | 21 | neneqd 2361 | . . . . . . . . . . 11 inr inl |
23 | 22 | a1i 9 | . . . . . . . . . 10 inr inr inl |
24 | 23 | rexlimdvw 2591 | . . . . . . . . 9 inr inr inl |
25 | 14, 24 | mpd 13 | . . . . . . . 8 inr inl |
26 | 25 | a1d 22 | . . . . . . 7 inr inl |
27 | 9, 26 | ralrimi 2541 | . . . . . 6 inr inl |
28 | ralnex 2458 | . . . . . 6 inl inl | |
29 | 27, 28 | sylib 121 | . . . . 5 inr inl |
30 | 29 | ex 114 | . . . 4 inr inl |
31 | 30 | orim2d 783 | . . 3 inl inr inl inl |
32 | 6, 31 | mpd 13 | . 2 inl inl |
33 | df-dc 830 | . 2 DECID inl inl inl | |
34 | 32, 33 | sylibr 133 | 1 DECID inl |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 DECID wdc 829 wceq 1348 wcel 2141 wne 2340 wral 2448 wrex 2449 cvv 2730 wf 5194 wfo 5196 cfv 5198 ⊔ cdju 7014 inlcinl 7022 inrcinr 7023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-dju 7015 df-inl 7024 df-inr 7025 |
This theorem is referenced by: fodjuf 7121 fodjum 7122 fodju0 7123 |
Copyright terms: Public domain | W3C validator |