ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjuomnilemdc Unicode version

Theorem fodjuomnilemdc 7272
Description: Lemma for fodjuomni 7277. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.)
Hypothesis
Ref Expression
fodjuomnilemdc.fo  |-  ( ph  ->  F : O -onto-> ( A B ) )
Assertion
Ref Expression
fodjuomnilemdc  |-  ( (
ph  /\  X  e.  O )  -> DECID  E. z  e.  A  ( F `  X )  =  (inl `  z
) )
Distinct variable groups:    z, A    z, B    z, F    z, O    z, X    ph, z

Proof of Theorem fodjuomnilemdc
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fodjuomnilemdc.fo . . . . . 6  |-  ( ph  ->  F : O -onto-> ( A B ) )
2 fof 5520 . . . . . 6  |-  ( F : O -onto-> ( A B )  ->  F : O --> ( A B ) )
31, 2syl 14 . . . . 5  |-  ( ph  ->  F : O --> ( A B ) )
43ffvelcdmda 5738 . . . 4  |-  ( (
ph  /\  X  e.  O )  ->  ( F `  X )  e.  ( A B )
)
5 djur 7197 . . . 4  |-  ( ( F `  X )  e.  ( A B )  <-> 
( E. z  e.  A  ( F `  X )  =  (inl
`  z )  \/ 
E. z  e.  B  ( F `  X )  =  (inr `  z
) ) )
64, 5sylib 122 . . 3  |-  ( (
ph  /\  X  e.  O )  ->  ( E. z  e.  A  ( F `  X )  =  (inl `  z
)  \/  E. z  e.  B  ( F `  X )  =  (inr
`  z ) ) )
7 nfv 1552 . . . . . . . 8  |-  F/ z ( ph  /\  X  e.  O )
8 nfre1 2551 . . . . . . . 8  |-  F/ z E. z  e.  B  ( F `  X )  =  (inr `  z
)
97, 8nfan 1589 . . . . . . 7  |-  F/ z ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z
) )
10 simpr 110 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  E. z  e.  B  ( F `  X )  =  (inr
`  z ) )
11 fveq2 5599 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (inr `  z )  =  (inr
`  w ) )
1211eqeq2d 2219 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( F `  X
)  =  (inr `  z )  <->  ( F `  X )  =  (inr
`  w ) ) )
1312cbvrexv 2743 . . . . . . . . . 10  |-  ( E. z  e.  B  ( F `  X )  =  (inr `  z
)  <->  E. w  e.  B  ( F `  X )  =  (inr `  w
) )
1410, 13sylib 122 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  E. w  e.  B  ( F `  X )  =  (inr
`  w ) )
15 vex 2779 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
16 vex 2779 . . . . . . . . . . . . . . 15  |-  w  e. 
_V
17 djune 7206 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  _V  /\  w  e.  _V )  ->  (inl `  z )  =/=  (inr `  w )
)
1815, 16, 17mp2an 426 . . . . . . . . . . . . . 14  |-  (inl `  z )  =/=  (inr `  w )
19 neeq2 2392 . . . . . . . . . . . . . 14  |-  ( ( F `  X )  =  (inr `  w
)  ->  ( (inl `  z )  =/=  ( F `  X )  <->  (inl
`  z )  =/=  (inr `  w )
) )
2018, 19mpbiri 168 . . . . . . . . . . . . 13  |-  ( ( F `  X )  =  (inr `  w
)  ->  (inl `  z
)  =/=  ( F `
 X ) )
2120necomd 2464 . . . . . . . . . . . 12  |-  ( ( F `  X )  =  (inr `  w
)  ->  ( F `  X )  =/=  (inl `  z ) )
2221neneqd 2399 . . . . . . . . . . 11  |-  ( ( F `  X )  =  (inr `  w
)  ->  -.  ( F `  X )  =  (inl `  z )
)
2322a1i 9 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  ( ( F `  X )  =  (inr `  w )  ->  -.  ( F `  X )  =  (inl
`  z ) ) )
2423rexlimdvw 2629 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  ( E. w  e.  B  ( F `  X )  =  (inr `  w )  ->  -.  ( F `  X )  =  (inl
`  z ) ) )
2514, 24mpd 13 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  -.  ( F `  X )  =  (inl `  z )
)
2625a1d 22 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  ( z  e.  A  ->  -.  ( F `  X )  =  (inl `  z )
) )
279, 26ralrimi 2579 . . . . . 6  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  A. z  e.  A  -.  ( F `  X )  =  (inl `  z )
)
28 ralnex 2496 . . . . . 6  |-  ( A. z  e.  A  -.  ( F `  X )  =  (inl `  z
)  <->  -.  E. z  e.  A  ( F `  X )  =  (inl
`  z ) )
2927, 28sylib 122 . . . . 5  |-  ( ( ( ph  /\  X  e.  O )  /\  E. z  e.  B  ( F `  X )  =  (inr `  z )
)  ->  -.  E. z  e.  A  ( F `  X )  =  (inl
`  z ) )
3029ex 115 . . . 4  |-  ( (
ph  /\  X  e.  O )  ->  ( E. z  e.  B  ( F `  X )  =  (inr `  z
)  ->  -.  E. z  e.  A  ( F `  X )  =  (inl
`  z ) ) )
3130orim2d 790 . . 3  |-  ( (
ph  /\  X  e.  O )  ->  (
( E. z  e.  A  ( F `  X )  =  (inl
`  z )  \/ 
E. z  e.  B  ( F `  X )  =  (inr `  z
) )  ->  ( E. z  e.  A  ( F `  X )  =  (inl `  z
)  \/  -.  E. z  e.  A  ( F `  X )  =  (inl `  z )
) ) )
326, 31mpd 13 . 2  |-  ( (
ph  /\  X  e.  O )  ->  ( E. z  e.  A  ( F `  X )  =  (inl `  z
)  \/  -.  E. z  e.  A  ( F `  X )  =  (inl `  z )
) )
33 df-dc 837 . 2  |-  (DECID  E. z  e.  A  ( F `  X )  =  (inl
`  z )  <->  ( E. z  e.  A  ( F `  X )  =  (inl `  z )  \/  -.  E. z  e.  A  ( F `  X )  =  (inl
`  z ) ) )
3432, 33sylibr 134 1  |-  ( (
ph  /\  X  e.  O )  -> DECID  E. z  e.  A  ( F `  X )  =  (inl `  z
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2178    =/= wne 2378   A.wral 2486   E.wrex 2487   _Vcvv 2776   -->wf 5286   -onto->wfo 5288   ` cfv 5290   ⊔ cdju 7165  inlcinl 7173  inrcinr 7174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-1o 6525  df-dju 7166  df-inl 7175  df-inr 7176
This theorem is referenced by:  fodjuf  7273  fodjum  7274  fodju0  7275
  Copyright terms: Public domain W3C validator