| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodjuomnilemdc | Unicode version | ||
| Description: Lemma for fodjuomni 7251. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.) |
| Ref | Expression |
|---|---|
| fodjuomnilemdc.fo |
|
| Ref | Expression |
|---|---|
| fodjuomnilemdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fodjuomnilemdc.fo |
. . . . . 6
| |
| 2 | fof 5498 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | 3 | ffvelcdmda 5715 |
. . . 4
|
| 5 | djur 7171 |
. . . 4
| |
| 6 | 4, 5 | sylib 122 |
. . 3
|
| 7 | nfv 1551 |
. . . . . . . 8
| |
| 8 | nfre1 2549 |
. . . . . . . 8
| |
| 9 | 7, 8 | nfan 1588 |
. . . . . . 7
|
| 10 | simpr 110 |
. . . . . . . . . 10
| |
| 11 | fveq2 5576 |
. . . . . . . . . . . 12
| |
| 12 | 11 | eqeq2d 2217 |
. . . . . . . . . . 11
|
| 13 | 12 | cbvrexv 2739 |
. . . . . . . . . 10
|
| 14 | 10, 13 | sylib 122 |
. . . . . . . . 9
|
| 15 | vex 2775 |
. . . . . . . . . . . . . . 15
| |
| 16 | vex 2775 |
. . . . . . . . . . . . . . 15
| |
| 17 | djune 7180 |
. . . . . . . . . . . . . . 15
| |
| 18 | 15, 16, 17 | mp2an 426 |
. . . . . . . . . . . . . 14
|
| 19 | neeq2 2390 |
. . . . . . . . . . . . . 14
| |
| 20 | 18, 19 | mpbiri 168 |
. . . . . . . . . . . . 13
|
| 21 | 20 | necomd 2462 |
. . . . . . . . . . . 12
|
| 22 | 21 | neneqd 2397 |
. . . . . . . . . . 11
|
| 23 | 22 | a1i 9 |
. . . . . . . . . 10
|
| 24 | 23 | rexlimdvw 2627 |
. . . . . . . . 9
|
| 25 | 14, 24 | mpd 13 |
. . . . . . . 8
|
| 26 | 25 | a1d 22 |
. . . . . . 7
|
| 27 | 9, 26 | ralrimi 2577 |
. . . . . 6
|
| 28 | ralnex 2494 |
. . . . . 6
| |
| 29 | 27, 28 | sylib 122 |
. . . . 5
|
| 30 | 29 | ex 115 |
. . . 4
|
| 31 | 30 | orim2d 790 |
. . 3
|
| 32 | 6, 31 | mpd 13 |
. 2
|
| 33 | df-dc 837 |
. 2
| |
| 34 | 32, 33 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1st 6226 df-2nd 6227 df-1o 6502 df-dju 7140 df-inl 7149 df-inr 7150 |
| This theorem is referenced by: fodjuf 7247 fodjum 7248 fodju0 7249 |
| Copyright terms: Public domain | W3C validator |