| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodjuomnilemdc | Unicode version | ||
| Description: Lemma for fodjuomni 7250. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.) |
| Ref | Expression |
|---|---|
| fodjuomnilemdc.fo |
|
| Ref | Expression |
|---|---|
| fodjuomnilemdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fodjuomnilemdc.fo |
. . . . . 6
| |
| 2 | fof 5497 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | 3 | ffvelcdmda 5714 |
. . . 4
|
| 5 | djur 7170 |
. . . 4
| |
| 6 | 4, 5 | sylib 122 |
. . 3
|
| 7 | nfv 1550 |
. . . . . . . 8
| |
| 8 | nfre1 2548 |
. . . . . . . 8
| |
| 9 | 7, 8 | nfan 1587 |
. . . . . . 7
|
| 10 | simpr 110 |
. . . . . . . . . 10
| |
| 11 | fveq2 5575 |
. . . . . . . . . . . 12
| |
| 12 | 11 | eqeq2d 2216 |
. . . . . . . . . . 11
|
| 13 | 12 | cbvrexv 2738 |
. . . . . . . . . 10
|
| 14 | 10, 13 | sylib 122 |
. . . . . . . . 9
|
| 15 | vex 2774 |
. . . . . . . . . . . . . . 15
| |
| 16 | vex 2774 |
. . . . . . . . . . . . . . 15
| |
| 17 | djune 7179 |
. . . . . . . . . . . . . . 15
| |
| 18 | 15, 16, 17 | mp2an 426 |
. . . . . . . . . . . . . 14
|
| 19 | neeq2 2389 |
. . . . . . . . . . . . . 14
| |
| 20 | 18, 19 | mpbiri 168 |
. . . . . . . . . . . . 13
|
| 21 | 20 | necomd 2461 |
. . . . . . . . . . . 12
|
| 22 | 21 | neneqd 2396 |
. . . . . . . . . . 11
|
| 23 | 22 | a1i 9 |
. . . . . . . . . 10
|
| 24 | 23 | rexlimdvw 2626 |
. . . . . . . . 9
|
| 25 | 14, 24 | mpd 13 |
. . . . . . . 8
|
| 26 | 25 | a1d 22 |
. . . . . . 7
|
| 27 | 9, 26 | ralrimi 2576 |
. . . . . 6
|
| 28 | ralnex 2493 |
. . . . . 6
| |
| 29 | 27, 28 | sylib 122 |
. . . . 5
|
| 30 | 29 | ex 115 |
. . . 4
|
| 31 | 30 | orim2d 789 |
. . 3
|
| 32 | 6, 31 | mpd 13 |
. 2
|
| 33 | df-dc 836 |
. 2
| |
| 34 | 32, 33 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-1st 6225 df-2nd 6226 df-1o 6501 df-dju 7139 df-inl 7148 df-inr 7149 |
| This theorem is referenced by: fodjuf 7246 fodjum 7247 fodju0 7248 |
| Copyright terms: Public domain | W3C validator |