Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fodjuomnilemdc | Unicode version |
Description: Lemma for fodjuomni 7113. Decidability of a condition we use in various lemmas. (Contributed by Jim Kingdon, 27-Jul-2022.) |
Ref | Expression |
---|---|
fodjuomnilemdc.fo | ⊔ |
Ref | Expression |
---|---|
fodjuomnilemdc | DECID inl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fodjuomnilemdc.fo | . . . . . 6 ⊔ | |
2 | fof 5410 | . . . . . 6 ⊔ ⊔ | |
3 | 1, 2 | syl 14 | . . . . 5 ⊔ |
4 | 3 | ffvelrnda 5620 | . . . 4 ⊔ |
5 | djur 7034 | . . . 4 ⊔ inl inr | |
6 | 4, 5 | sylib 121 | . . 3 inl inr |
7 | nfv 1516 | . . . . . . . 8 | |
8 | nfre1 2509 | . . . . . . . 8 inr | |
9 | 7, 8 | nfan 1553 | . . . . . . 7 inr |
10 | simpr 109 | . . . . . . . . . 10 inr inr | |
11 | fveq2 5486 | . . . . . . . . . . . 12 inr inr | |
12 | 11 | eqeq2d 2177 | . . . . . . . . . . 11 inr inr |
13 | 12 | cbvrexv 2693 | . . . . . . . . . 10 inr inr |
14 | 10, 13 | sylib 121 | . . . . . . . . 9 inr inr |
15 | vex 2729 | . . . . . . . . . . . . . . 15 | |
16 | vex 2729 | . . . . . . . . . . . . . . 15 | |
17 | djune 7043 | . . . . . . . . . . . . . . 15 inl inr | |
18 | 15, 16, 17 | mp2an 423 | . . . . . . . . . . . . . 14 inl inr |
19 | neeq2 2350 | . . . . . . . . . . . . . 14 inr inl inl inr | |
20 | 18, 19 | mpbiri 167 | . . . . . . . . . . . . 13 inr inl |
21 | 20 | necomd 2422 | . . . . . . . . . . . 12 inr inl |
22 | 21 | neneqd 2357 | . . . . . . . . . . 11 inr inl |
23 | 22 | a1i 9 | . . . . . . . . . 10 inr inr inl |
24 | 23 | rexlimdvw 2587 | . . . . . . . . 9 inr inr inl |
25 | 14, 24 | mpd 13 | . . . . . . . 8 inr inl |
26 | 25 | a1d 22 | . . . . . . 7 inr inl |
27 | 9, 26 | ralrimi 2537 | . . . . . 6 inr inl |
28 | ralnex 2454 | . . . . . 6 inl inl | |
29 | 27, 28 | sylib 121 | . . . . 5 inr inl |
30 | 29 | ex 114 | . . . 4 inr inl |
31 | 30 | orim2d 778 | . . 3 inl inr inl inl |
32 | 6, 31 | mpd 13 | . 2 inl inl |
33 | df-dc 825 | . 2 DECID inl inl inl | |
34 | 32, 33 | sylibr 133 | 1 DECID inl |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 824 wceq 1343 wcel 2136 wne 2336 wral 2444 wrex 2445 cvv 2726 wf 5184 wfo 5186 cfv 5188 ⊔ cdju 7002 inlcinl 7010 inrcinr 7011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dju 7003 df-inl 7012 df-inr 7013 |
This theorem is referenced by: fodjuf 7109 fodjum 7110 fodju0 7111 |
Copyright terms: Public domain | W3C validator |