ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidunben Unicode version

Theorem exmidunben 12882
Description: If any unbounded set of positive integers is equinumerous to  NN, then the Limited Principle of Omniscience (LPO) implies excluded middle. (Contributed by Jim Kingdon, 29-Jul-2023.)
Assertion
Ref Expression
exmidunben  |-  ( ( A. x ( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  -> EXMID )
Distinct variable group:    m, n, x

Proof of Theorem exmidunben
Dummy variables  f  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2776 . . . . . . . . . . 11  |-  y  e. 
_V
21enref 6874 . . . . . . . . . 10  |-  y  ~~  y
3 2z 9430 . . . . . . . . . . 11  |-  2  e.  ZZ
4 uzennn 10613 . . . . . . . . . . 11  |-  ( 2  e.  ZZ  ->  ( ZZ>=
`  2 )  ~~  NN )
53, 4ax-mp 5 . . . . . . . . . 10  |-  ( ZZ>= ` 
2 )  ~~  NN
6 djuen 7349 . . . . . . . . . 10  |-  ( ( y  ~~  y  /\  ( ZZ>= `  2 )  ~~  NN )  ->  (
y ( ZZ>= `  2 )
)  ~~  ( y NN ) )
72, 5, 6mp2an 426 . . . . . . . . 9  |-  ( y ( ZZ>= `  2 )
)  ~~  ( y NN )
87ensymi 6892 . . . . . . . 8  |-  ( y NN )  ~~  ( y ( ZZ>= `  2 )
)
9 zex 9411 . . . . . . . . . . 11  |-  ZZ  e.  _V
10 uzssz 9698 . . . . . . . . . . 11  |-  ( ZZ>= ` 
2 )  C_  ZZ
119, 10ssexi 4193 . . . . . . . . . 10  |-  ( ZZ>= ` 
2 )  e.  _V
12 1re 8101 . . . . . . . . . . . . . . 15  |-  1  e.  RR
1312ltnri 8195 . . . . . . . . . . . . . 14  |-  -.  1  <  1
14 simplr 528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  z  e.  y )  ->  y  C_ 
{ 1 } )
15 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  z  e.  y )  ->  z  e.  y )
1614, 15sseldd 3198 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  z  e.  y )  ->  z  e.  { 1 } )
17 elsni 3656 . . . . . . . . . . . . . . . 16  |-  ( z  e.  { 1 }  ->  z  =  1 )
1816, 17syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  z  e.  y )  ->  z  =  1 )
1918breq2d 4066 . . . . . . . . . . . . . 14  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  z  e.  y )  ->  (
1  <  z  <->  1  <  1 ) )
2013, 19mtbiri 677 . . . . . . . . . . . . 13  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  z  e.  y )  ->  -.  1  <  z )
21 eluz2gt1 9753 . . . . . . . . . . . . 13  |-  ( z  e.  ( ZZ>= `  2
)  ->  1  <  z )
2220, 21nsyl 629 . . . . . . . . . . . 12  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  z  e.  y )  ->  -.  z  e.  ( ZZ>= ` 
2 ) )
2322ralrimiva 2580 . . . . . . . . . . 11  |-  ( ( ( A. x ( ( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_ 
{ 1 } )  ->  A. z  e.  y  -.  z  e.  (
ZZ>= `  2 ) )
24 disj 3513 . . . . . . . . . . 11  |-  ( ( y  i^i  ( ZZ>= ` 
2 ) )  =  (/) 
<-> 
A. z  e.  y  -.  z  e.  (
ZZ>= `  2 ) )
2523, 24sylibr 134 . . . . . . . . . 10  |-  ( ( ( A. x ( ( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_ 
{ 1 } )  ->  ( y  i^i  ( ZZ>= `  2 )
)  =  (/) )
26 endjudisj 7348 . . . . . . . . . 10  |-  ( ( y  e.  _V  /\  ( ZZ>= `  2 )  e.  _V  /\  ( y  i^i  ( ZZ>= `  2
) )  =  (/) )  ->  ( y ( ZZ>=
`  2 ) ) 
~~  ( y  u.  ( ZZ>= `  2 )
) )
271, 11, 25, 26mp3an12i 1354 . . . . . . . . 9  |-  ( ( ( A. x ( ( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_ 
{ 1 } )  ->  ( y ( ZZ>=
`  2 ) ) 
~~  ( y  u.  ( ZZ>= `  2 )
) )
28 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( A. x ( ( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_ 
{ 1 } )  ->  y  C_  { 1 } )
29 1nn 9077 . . . . . . . . . . . . 13  |-  1  e.  NN
30 snssi 3783 . . . . . . . . . . . . 13  |-  ( 1  e.  NN  ->  { 1 }  C_  NN )
3129, 30ax-mp 5 . . . . . . . . . . . 12  |-  { 1 }  C_  NN
3228, 31sstrdi 3209 . . . . . . . . . . 11  |-  ( ( ( A. x ( ( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_ 
{ 1 } )  ->  y  C_  NN )
33 2nn 9228 . . . . . . . . . . . 12  |-  2  e.  NN
34 uznnssnn 9728 . . . . . . . . . . . 12  |-  ( 2  e.  NN  ->  ( ZZ>=
`  2 )  C_  NN )
3533, 34mp1i 10 . . . . . . . . . . 11  |-  ( ( ( A. x ( ( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_ 
{ 1 } )  ->  ( ZZ>= `  2
)  C_  NN )
3632, 35unssd 3353 . . . . . . . . . 10  |-  ( ( ( A. x ( ( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_ 
{ 1 } )  ->  ( y  u.  ( ZZ>= `  2 )
)  C_  NN )
37 nfv 1552 . . . . . . . . . . . . . . . 16  |-  F/ m  x  C_  NN
38 nfra1 2538 . . . . . . . . . . . . . . . 16  |-  F/ m A. m  e.  NN  E. n  e.  x  m  <  n
3937, 38nfan 1589 . . . . . . . . . . . . . . 15  |-  F/ m
( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )
40 nfv 1552 . . . . . . . . . . . . . . 15  |-  F/ m  x  ~~  NN
4139, 40nfim 1596 . . . . . . . . . . . . . 14  |-  F/ m
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )
4241nfal 1600 . . . . . . . . . . . . 13  |-  F/ m A. x ( ( x 
C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )
43 nfv 1552 . . . . . . . . . . . . 13  |-  F/ m om  e. Omni
4442, 43nfan 1589 . . . . . . . . . . . 12  |-  F/ m
( A. x ( ( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )
45 nfv 1552 . . . . . . . . . . . 12  |-  F/ m  y  C_  { 1 }
4644, 45nfan 1589 . . . . . . . . . . 11  |-  F/ m
( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )
47 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  m  e.  NN )  ->  m  e.  NN )
4847peano2nnd 9081 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  m  e.  NN )  ->  (
m  +  1 )  e.  NN )
4948nnzd 9524 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  m  e.  NN )  ->  (
m  +  1 )  e.  ZZ )
50 0p1e1 9180 . . . . . . . . . . . . . . . . 17  |-  ( 0  +  1 )  =  1
51 0red 8103 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  NN  ->  0  e.  RR )
52 nnre 9073 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  NN  ->  m  e.  RR )
53 1red 8117 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  NN  ->  1  e.  RR )
54 nngt0 9091 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  NN  ->  0  <  m )
5551, 52, 53, 54ltadd1dd 8659 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  NN  ->  (
0  +  1 )  <  ( m  + 
1 ) )
5650, 55eqbrtrrid 4090 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  1  <  ( m  +  1 ) )
5756adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  m  e.  NN )  ->  1  <  ( m  +  1 ) )
58 eluz2b1 9752 . . . . . . . . . . . . . . 15  |-  ( ( m  +  1 )  e.  ( ZZ>= `  2
)  <->  ( ( m  +  1 )  e.  ZZ  /\  1  < 
( m  +  1 ) ) )
5949, 57, 58sylanbrc 417 . . . . . . . . . . . . . 14  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  m  e.  NN )  ->  (
m  +  1 )  e.  ( ZZ>= `  2
) )
60 elun2 3345 . . . . . . . . . . . . . 14  |-  ( ( m  +  1 )  e.  ( ZZ>= `  2
)  ->  ( m  +  1 )  e.  ( y  u.  ( ZZ>=
`  2 ) ) )
6159, 60syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  m  e.  NN )  ->  (
m  +  1 )  e.  ( y  u.  ( ZZ>= `  2 )
) )
6247nnred 9079 . . . . . . . . . . . . . 14  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  m  e.  NN )  ->  m  e.  RR )
6362ltp1d 9033 . . . . . . . . . . . . 13  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  m  e.  NN )  ->  m  <  ( m  +  1 ) )
64 breq2 4058 . . . . . . . . . . . . . 14  |-  ( n  =  ( m  + 
1 )  ->  (
m  <  n  <->  m  <  ( m  +  1 ) ) )
6564rspcev 2881 . . . . . . . . . . . . 13  |-  ( ( ( m  +  1 )  e.  ( y  u.  ( ZZ>= `  2
) )  /\  m  <  ( m  +  1 ) )  ->  E. n  e.  ( y  u.  ( ZZ>=
`  2 ) ) m  <  n )
6661, 63, 65syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  m  e.  NN )  ->  E. n  e.  ( y  u.  ( ZZ>=
`  2 ) ) m  <  n )
6766ex 115 . . . . . . . . . . 11  |-  ( ( ( A. x ( ( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_ 
{ 1 } )  ->  ( m  e.  NN  ->  E. n  e.  ( y  u.  ( ZZ>=
`  2 ) ) m  <  n ) )
6846, 67ralrimi 2578 . . . . . . . . . 10  |-  ( ( ( A. x ( ( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_ 
{ 1 } )  ->  A. m  e.  NN  E. n  e.  ( y  u.  ( ZZ>= `  2
) ) m  < 
n )
691, 11unex 4501 . . . . . . . . . . . 12  |-  ( y  u.  ( ZZ>= `  2
) )  e.  _V
70 sseq1 3220 . . . . . . . . . . . . . 14  |-  ( x  =  ( y  u.  ( ZZ>= `  2 )
)  ->  ( x  C_  NN  <->  ( y  u.  ( ZZ>= `  2 )
)  C_  NN )
)
71 rexeq 2704 . . . . . . . . . . . . . . 15  |-  ( x  =  ( y  u.  ( ZZ>= `  2 )
)  ->  ( E. n  e.  x  m  <  n  <->  E. n  e.  ( y  u.  ( ZZ>= ` 
2 ) ) m  <  n ) )
7271ralbidv 2507 . . . . . . . . . . . . . 14  |-  ( x  =  ( y  u.  ( ZZ>= `  2 )
)  ->  ( A. m  e.  NN  E. n  e.  x  m  <  n  <->  A. m  e.  NN  E. n  e.  ( y  u.  ( ZZ>= `  2
) ) m  < 
n ) )
7370, 72anbi12d 473 . . . . . . . . . . . . 13  |-  ( x  =  ( y  u.  ( ZZ>= `  2 )
)  ->  ( (
x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n )  <->  ( ( y  u.  ( ZZ>= `  2
) )  C_  NN  /\ 
A. m  e.  NN  E. n  e.  ( y  u.  ( ZZ>= `  2
) ) m  < 
n ) ) )
74 breq1 4057 . . . . . . . . . . . . 13  |-  ( x  =  ( y  u.  ( ZZ>= `  2 )
)  ->  ( x  ~~  NN  <->  ( y  u.  ( ZZ>= `  2 )
)  ~~  NN )
)
7573, 74imbi12d 234 . . . . . . . . . . . 12  |-  ( x  =  ( y  u.  ( ZZ>= `  2 )
)  ->  ( (
( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  <->  ( (
( y  u.  ( ZZ>=
`  2 ) ) 
C_  NN  /\  A. m  e.  NN  E. n  e.  ( y  u.  ( ZZ>=
`  2 ) ) m  <  n )  ->  ( y  u.  ( ZZ>= `  2 )
)  ~~  NN )
) )
7669, 75spcv 2871 . . . . . . . . . . 11  |-  ( A. x ( ( x 
C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  ->  ( ( ( y  u.  ( ZZ>=
`  2 ) ) 
C_  NN  /\  A. m  e.  NN  E. n  e.  ( y  u.  ( ZZ>=
`  2 ) ) m  <  n )  ->  ( y  u.  ( ZZ>= `  2 )
)  ~~  NN )
)
7776ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( A. x ( ( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_ 
{ 1 } )  ->  ( ( ( y  u.  ( ZZ>= ` 
2 ) )  C_  NN  /\  A. m  e.  NN  E. n  e.  ( y  u.  ( ZZ>=
`  2 ) ) m  <  n )  ->  ( y  u.  ( ZZ>= `  2 )
)  ~~  NN )
)
7836, 68, 77mp2and 433 . . . . . . . . 9  |-  ( ( ( A. x ( ( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_ 
{ 1 } )  ->  ( y  u.  ( ZZ>= `  2 )
)  ~~  NN )
79 entr 6894 . . . . . . . . 9  |-  ( ( ( y ( ZZ>= ` 
2 ) )  ~~  ( y  u.  ( ZZ>=
`  2 ) )  /\  ( y  u.  ( ZZ>= `  2 )
)  ~~  NN )  ->  ( y ( ZZ>= ` 
2 ) )  ~~  NN )
8027, 78, 79syl2anc 411 . . . . . . . 8  |-  ( ( ( A. x ( ( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_ 
{ 1 } )  ->  ( y ( ZZ>=
`  2 ) ) 
~~  NN )
81 entr 6894 . . . . . . . 8  |-  ( ( ( y NN ) 
~~  ( y ( ZZ>=
`  2 ) )  /\  ( y ( ZZ>=
`  2 ) ) 
~~  NN )  -> 
( y NN )  ~~  NN )
828, 80, 81sylancr 414 . . . . . . 7  |-  ( ( ( A. x ( ( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_ 
{ 1 } )  ->  ( y NN )  ~~  NN )
8382ensymd 6893 . . . . . 6  |-  ( ( ( A. x ( ( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_ 
{ 1 } )  ->  NN  ~~  (
y NN ) )
84 bren 6853 . . . . . 6  |-  ( NN 
~~  ( y NN ) 
<->  E. f  f : NN -1-1-onto-> ( y NN ) )
8583, 84sylib 122 . . . . 5  |-  ( ( ( A. x ( ( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_ 
{ 1 } )  ->  E. f  f : NN -1-1-onto-> ( y NN ) )
86 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  f : NN -1-1-onto-> ( y NN ) )  ->  om  e. Omni )
87 nnenom 10611 . . . . . . . . . 10  |-  NN  ~~  om
88 enomni 7262 . . . . . . . . . 10  |-  ( NN 
~~  om  ->  ( NN  e. Omni 
<->  om  e. Omni ) )
8987, 88ax-mp 5 . . . . . . . . 9  |-  ( NN  e. Omni 
<->  om  e. Omni )
9086, 89sylibr 134 . . . . . . . 8  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  f : NN -1-1-onto-> ( y NN ) )  ->  NN  e. Omni )
91 f1ofo 5546 . . . . . . . . 9  |-  ( f : NN -1-1-onto-> ( y NN )  ->  f : NN -onto->
( y NN )
)
9291adantl 277 . . . . . . . 8  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  f : NN -1-1-onto-> ( y NN ) )  ->  f : NN -onto-> ( y NN ) )
9390, 92fodjuomni 7272 . . . . . . 7  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  f : NN -1-1-onto-> ( y NN ) )  ->  ( E. w  w  e.  y  \/  y  =  (/) ) )
9493orcomd 731 . . . . . 6  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  f : NN -1-1-onto-> ( y NN ) )  ->  ( y  =  (/)  \/  E. w  w  e.  y )
)
95 simplr 528 . . . . . . . 8  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  f : NN -1-1-onto-> ( y NN ) )  ->  y  C_  { 1 } )
96 sssnm 3803 . . . . . . . 8  |-  ( E. w  w  e.  y  ->  ( y  C_  { 1 }  <->  y  =  { 1 } ) )
9795, 96syl5ibcom 155 . . . . . . 7  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  f : NN -1-1-onto-> ( y NN ) )  ->  ( E. w  w  e.  y  ->  y  =  { 1 } ) )
9897orim2d 790 . . . . . 6  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  f : NN -1-1-onto-> ( y NN ) )  ->  ( (
y  =  (/)  \/  E. w  w  e.  y
)  ->  ( y  =  (/)  \/  y  =  { 1 } ) ) )
9994, 98mpd 13 . . . . 5  |-  ( ( ( ( A. x
( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n
)  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_  { 1 } )  /\  f : NN -1-1-onto-> ( y NN ) )  ->  ( y  =  (/)  \/  y  =  { 1 } ) )
10085, 99exlimddv 1923 . . . 4  |-  ( ( ( A. x ( ( x  C_  NN  /\ 
A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  /\  y  C_ 
{ 1 } )  ->  ( y  =  (/)  \/  y  =  {
1 } ) )
101100ex 115 . . 3  |-  ( ( A. x ( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  ->  ( y  C_  { 1 }  ->  (
y  =  (/)  \/  y  =  { 1 } ) ) )
102101alrimiv 1898 . 2  |-  ( ( A. x ( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  ->  A. y ( y 
C_  { 1 }  ->  ( y  =  (/)  \/  y  =  {
1 } ) ) )
103 exmidsssnc 4258 . . 3  |-  ( 1  e.  NN  ->  (EXMID  <->  A. y
( y  C_  { 1 }  ->  ( y  =  (/)  \/  y  =  { 1 } ) ) ) )
10429, 103ax-mp 5 . 2  |-  (EXMID  <->  A. y
( y  C_  { 1 }  ->  ( y  =  (/)  \/  y  =  { 1 } ) ) )
105102, 104sylibr 134 1  |-  ( ( A. x ( ( x  C_  NN  /\  A. m  e.  NN  E. n  e.  x  m  <  n )  ->  x  ~~  NN )  /\  om  e. Omni )  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710   A.wal 1371    = wceq 1373   E.wex 1516    e. wcel 2177   A.wral 2485   E.wrex 2486   _Vcvv 2773    u. cun 3168    i^i cin 3169    C_ wss 3170   (/)c0 3464   {csn 3638   class class class wbr 4054  EXMIDwem 4249   omcom 4651   -onto->wfo 5283   -1-1-onto->wf1o 5284   ` cfv 5285  (class class class)co 5962    ~~ cen 6843   ⊔ cdju 7160  Omnicomni 7257   0cc0 7955   1c1 7956    + caddc 7958    < clt 8137   NNcn 9066   2c2 9117   ZZcz 9402   ZZ>=cuz 9678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-exmid 4250  df-id 4353  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-1o 6520  df-2o 6521  df-er 6638  df-map 6755  df-en 6846  df-dju 7161  df-inl 7170  df-inr 7171  df-omni 7258  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-2 9125  df-n0 9326  df-z 9403  df-uz 9679
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator