ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxabslemlub Unicode version

Theorem maxabslemlub 11351
Description: Lemma for maxabs 11353. A least upper bound for  { A ,  B }. (Contributed by Jim Kingdon, 20-Dec-2021.)
Hypotheses
Ref Expression
maxabslemlub.a  |-  ( ph  ->  A  e.  RR )
maxabslemlub.b  |-  ( ph  ->  B  e.  RR )
maxabslemlub.c  |-  ( ph  ->  C  e.  RR )
maxabslemlub.clt  |-  ( ph  ->  C  <  ( ( ( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 ) )
Assertion
Ref Expression
maxabslemlub  |-  ( ph  ->  ( C  <  A  \/  C  <  B ) )

Proof of Theorem maxabslemlub
StepHypRef Expression
1 maxabslemlub.clt . . 3  |-  ( ph  ->  C  <  ( ( ( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 ) )
2 maxabslemlub.c . . . 4  |-  ( ph  ->  C  e.  RR )
3 maxabslemlub.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
4 maxabslemlub.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
53, 4readdcld 8049 . . . . . 6  |-  ( ph  ->  ( A  +  B
)  e.  RR )
63recnd 8048 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
74recnd 8048 . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
86, 7subcld 8330 . . . . . . 7  |-  ( ph  ->  ( A  -  B
)  e.  CC )
98abscld 11325 . . . . . 6  |-  ( ph  ->  ( abs `  ( A  -  B )
)  e.  RR )
105, 9readdcld 8049 . . . . 5  |-  ( ph  ->  ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  e.  RR )
1110rehalfcld 9229 . . . 4  |-  ( ph  ->  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR )
12 axltwlin 8087 . . . 4  |-  ( ( C  e.  RR  /\  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  A  e.  RR )  ->  ( C  <  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  ->  ( C  < 
A  \/  A  < 
( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) ) ) )
132, 11, 3, 12syl3anc 1249 . . 3  |-  ( ph  ->  ( C  <  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  ->  ( C  < 
A  \/  A  < 
( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) ) ) )
141, 13mpd 13 . 2  |-  ( ph  ->  ( C  <  A  \/  A  <  ( ( ( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 ) ) )
151adantr 276 . . . . 5  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  C  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )
163adantr 276 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  A  e.  RR )
174adantr 276 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  B  e.  RR )
1816, 17resubcld 8400 . . . . . . . 8  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( A  -  B )  e.  RR )
19 2re 9052 . . . . . . . . . . . . . 14  |-  2  e.  RR
2019a1i 9 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  2  e.  RR )
2120, 16remulcld 8050 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( 2  x.  A )  e.  RR )
2221recnd 8048 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( 2  x.  A )  e.  CC )
236adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  A  e.  CC )
247adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  B  e.  CC )
2522, 23, 24subsub4d 8361 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
( 2  x.  A
)  -  A )  -  B )  =  ( ( 2  x.  A )  -  ( A  +  B )
) )
26 2cnd 9055 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  2  e.  CC )
2726, 23mulsubfacd 8437 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
2  x.  A )  -  A )  =  ( ( 2  -  1 )  x.  A
) )
28 2m1e1 9100 . . . . . . . . . . . . . 14  |-  ( 2  -  1 )  =  1
2928oveq1i 5928 . . . . . . . . . . . . 13  |-  ( ( 2  -  1 )  x.  A )  =  ( 1  x.  A
)
3027, 29eqtrdi 2242 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
2  x.  A )  -  A )  =  ( 1  x.  A
) )
3123mulid2d 8038 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( 1  x.  A )  =  A )
3230, 31eqtrd 2226 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
2  x.  A )  -  A )  =  A )
3332oveq1d 5933 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
( 2  x.  A
)  -  A )  -  B )  =  ( A  -  B
) )
3425, 33eqtr3d 2228 . . . . . . . . 9  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
2  x.  A )  -  ( A  +  B ) )  =  ( A  -  B
) )
35 simpr 110 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )
3610adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  e.  RR )
37 2rp 9724 . . . . . . . . . . . . 13  |-  2  e.  RR+
3837a1i 9 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  2  e.  RR+ )
3916, 36, 38ltmuldiv2d 9811 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
2  x.  A )  <  ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  <->  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) ) )
4035, 39mpbird 167 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( 2  x.  A )  < 
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) ) )
415adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( A  +  B )  e.  RR )
429adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( abs `  ( A  -  B
) )  e.  RR )
4321, 41, 42ltsubadd2d 8562 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
( 2  x.  A
)  -  ( A  +  B ) )  <  ( abs `  ( A  -  B )
)  <->  ( 2  x.  A )  <  (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) ) ) )
4440, 43mpbird 167 . . . . . . . . 9  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
2  x.  A )  -  ( A  +  B ) )  < 
( abs `  ( A  -  B )
) )
4534, 44eqbrtrrd 4053 . . . . . . . 8  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( A  -  B )  <  ( abs `  ( A  -  B ) ) )
46 ltabs 11231 . . . . . . . 8  |-  ( ( ( A  -  B
)  e.  RR  /\  ( A  -  B
)  <  ( abs `  ( A  -  B
) ) )  -> 
( A  -  B
)  <  0 )
4718, 45, 46syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( A  -  B )  <  0
)
4816, 17sublt0d 8589 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( ( A  -  B )  <  0  <->  A  <  B ) )
4947, 48mpbid 147 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  A  <  B )
5016, 17, 49maxabslemab 11350 . . . . 5  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  =  B )
5115, 50breqtrd 4055 . . . 4  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  C  <  B )
5251ex 115 . . 3  |-  ( ph  ->  ( A  <  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  ->  C  <  B
) )
5352orim2d 789 . 2  |-  ( ph  ->  ( ( C  < 
A  \/  A  < 
( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  ->  ( C  <  A  \/  C  <  B ) ) )
5414, 53mpd 13 1  |-  ( ph  ->  ( C  <  A  \/  C  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    - cmin 8190    / cdiv 8691   2c2 9033   RR+crp 9719   abscabs 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143
This theorem is referenced by:  maxabslemval  11352  maxleastlt  11359
  Copyright terms: Public domain W3C validator