ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxabslemlub Unicode version

Theorem maxabslemlub 11171
Description: Lemma for maxabs 11173. A least upper bound for  { A ,  B }. (Contributed by Jim Kingdon, 20-Dec-2021.)
Hypotheses
Ref Expression
maxabslemlub.a  |-  ( ph  ->  A  e.  RR )
maxabslemlub.b  |-  ( ph  ->  B  e.  RR )
maxabslemlub.c  |-  ( ph  ->  C  e.  RR )
maxabslemlub.clt  |-  ( ph  ->  C  <  ( ( ( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 ) )
Assertion
Ref Expression
maxabslemlub  |-  ( ph  ->  ( C  <  A  \/  C  <  B ) )

Proof of Theorem maxabslemlub
StepHypRef Expression
1 maxabslemlub.clt . . 3  |-  ( ph  ->  C  <  ( ( ( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 ) )
2 maxabslemlub.c . . . 4  |-  ( ph  ->  C  e.  RR )
3 maxabslemlub.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
4 maxabslemlub.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
53, 4readdcld 7949 . . . . . 6  |-  ( ph  ->  ( A  +  B
)  e.  RR )
63recnd 7948 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
74recnd 7948 . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
86, 7subcld 8230 . . . . . . 7  |-  ( ph  ->  ( A  -  B
)  e.  CC )
98abscld 11145 . . . . . 6  |-  ( ph  ->  ( abs `  ( A  -  B )
)  e.  RR )
105, 9readdcld 7949 . . . . 5  |-  ( ph  ->  ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  e.  RR )
1110rehalfcld 9124 . . . 4  |-  ( ph  ->  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR )
12 axltwlin 7987 . . . 4  |-  ( ( C  e.  RR  /\  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  A  e.  RR )  ->  ( C  <  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  ->  ( C  < 
A  \/  A  < 
( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) ) ) )
132, 11, 3, 12syl3anc 1233 . . 3  |-  ( ph  ->  ( C  <  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  ->  ( C  < 
A  \/  A  < 
( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) ) ) )
141, 13mpd 13 . 2  |-  ( ph  ->  ( C  <  A  \/  A  <  ( ( ( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 ) ) )
151adantr 274 . . . . 5  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  C  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )
163adantr 274 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  A  e.  RR )
174adantr 274 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  B  e.  RR )
1816, 17resubcld 8300 . . . . . . . 8  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( A  -  B )  e.  RR )
19 2re 8948 . . . . . . . . . . . . . 14  |-  2  e.  RR
2019a1i 9 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  2  e.  RR )
2120, 16remulcld 7950 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( 2  x.  A )  e.  RR )
2221recnd 7948 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( 2  x.  A )  e.  CC )
236adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  A  e.  CC )
247adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  B  e.  CC )
2522, 23, 24subsub4d 8261 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
( 2  x.  A
)  -  A )  -  B )  =  ( ( 2  x.  A )  -  ( A  +  B )
) )
26 2cnd 8951 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  2  e.  CC )
2726, 23mulsubfacd 8337 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
2  x.  A )  -  A )  =  ( ( 2  -  1 )  x.  A
) )
28 2m1e1 8996 . . . . . . . . . . . . . 14  |-  ( 2  -  1 )  =  1
2928oveq1i 5863 . . . . . . . . . . . . 13  |-  ( ( 2  -  1 )  x.  A )  =  ( 1  x.  A
)
3027, 29eqtrdi 2219 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
2  x.  A )  -  A )  =  ( 1  x.  A
) )
3123mulid2d 7938 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( 1  x.  A )  =  A )
3230, 31eqtrd 2203 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
2  x.  A )  -  A )  =  A )
3332oveq1d 5868 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
( 2  x.  A
)  -  A )  -  B )  =  ( A  -  B
) )
3425, 33eqtr3d 2205 . . . . . . . . 9  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
2  x.  A )  -  ( A  +  B ) )  =  ( A  -  B
) )
35 simpr 109 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )
3610adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  e.  RR )
37 2rp 9615 . . . . . . . . . . . . 13  |-  2  e.  RR+
3837a1i 9 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  2  e.  RR+ )
3916, 36, 38ltmuldiv2d 9702 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
2  x.  A )  <  ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  <->  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) ) )
4035, 39mpbird 166 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( 2  x.  A )  < 
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) ) )
415adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( A  +  B )  e.  RR )
429adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( abs `  ( A  -  B
) )  e.  RR )
4321, 41, 42ltsubadd2d 8462 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
( 2  x.  A
)  -  ( A  +  B ) )  <  ( abs `  ( A  -  B )
)  <->  ( 2  x.  A )  <  (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) ) ) )
4440, 43mpbird 166 . . . . . . . . 9  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
2  x.  A )  -  ( A  +  B ) )  < 
( abs `  ( A  -  B )
) )
4534, 44eqbrtrrd 4013 . . . . . . . 8  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( A  -  B )  <  ( abs `  ( A  -  B ) ) )
46 ltabs 11051 . . . . . . . 8  |-  ( ( ( A  -  B
)  e.  RR  /\  ( A  -  B
)  <  ( abs `  ( A  -  B
) ) )  -> 
( A  -  B
)  <  0 )
4718, 45, 46syl2anc 409 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( A  -  B )  <  0
)
4816, 17sublt0d 8489 . . . . . . 7  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( ( A  -  B )  <  0  <->  A  <  B ) )
4947, 48mpbid 146 . . . . . 6  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  A  <  B )
5016, 17, 49maxabslemab 11170 . . . . 5  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  =  B )
5115, 50breqtrd 4015 . . . 4  |-  ( (
ph  /\  A  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )  ->  C  <  B )
5251ex 114 . . 3  |-  ( ph  ->  ( A  <  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  ->  C  <  B
) )
5352orim2d 783 . 2  |-  ( ph  ->  ( ( C  < 
A  \/  A  < 
( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )  ->  ( C  <  A  \/  C  <  B ) ) )
5414, 53mpd 13 1  |-  ( ph  ->  ( C  <  A  \/  C  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703    e. wcel 2141   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    - cmin 8090    / cdiv 8589   2c2 8929   RR+crp 9610   abscabs 10961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by:  maxabslemval  11172  maxleastlt  11179
  Copyright terms: Public domain W3C validator