ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmid1dc Unicode version

Theorem exmid1dc 4229
Description: A convenience theorem for proving that something implies EXMID. Think of this as an alternative to using a proposition, as in proofs like undifexmid 4222 or ordtriexmid 4553. In this context  x  =  { (/) } can be thought of as "x is true". (Contributed by Jim Kingdon, 21-Nov-2023.)
Hypothesis
Ref Expression
exmid1dc.x  |-  ( (
ph  /\  x  C_  { (/) } )  -> DECID  x  =  { (/)
} )
Assertion
Ref Expression
exmid1dc  |-  ( ph  -> EXMID )
Distinct variable group:    ph, x

Proof of Theorem exmid1dc
StepHypRef Expression
1 exmid1dc.x . . . . . . 7  |-  ( (
ph  /\  x  C_  { (/) } )  -> DECID  x  =  { (/)
} )
2 exmiddc 837 . . . . . . 7  |-  (DECID  x  =  { (/) }  ->  (
x  =  { (/) }  \/  -.  x  =  { (/) } ) )
31, 2syl 14 . . . . . 6  |-  ( (
ph  /\  x  C_  { (/) } )  ->  ( x  =  { (/) }  \/  -.  x  =  { (/) } ) )
4 df-ne 2365 . . . . . . . . 9  |-  ( x  =/=  { (/) }  <->  -.  x  =  { (/) } )
5 pwntru 4228 . . . . . . . . . 10  |-  ( ( x  C_  { (/) }  /\  x  =/=  { (/) } )  ->  x  =  (/) )
65ex 115 . . . . . . . . 9  |-  ( x 
C_  { (/) }  ->  ( x  =/=  { (/) }  ->  x  =  (/) ) )
74, 6biimtrrid 153 . . . . . . . 8  |-  ( x 
C_  { (/) }  ->  ( -.  x  =  { (/)
}  ->  x  =  (/) ) )
87orim2d 789 . . . . . . 7  |-  ( x 
C_  { (/) }  ->  ( ( x  =  { (/)
}  \/  -.  x  =  { (/) } )  -> 
( x  =  { (/)
}  \/  x  =  (/) ) ) )
98adantl 277 . . . . . 6  |-  ( (
ph  /\  x  C_  { (/) } )  ->  ( (
x  =  { (/) }  \/  -.  x  =  { (/) } )  -> 
( x  =  { (/)
}  \/  x  =  (/) ) ) )
103, 9mpd 13 . . . . 5  |-  ( (
ph  /\  x  C_  { (/) } )  ->  ( x  =  { (/) }  \/  x  =  (/) ) )
1110orcomd 730 . . . 4  |-  ( (
ph  /\  x  C_  { (/) } )  ->  ( x  =  (/)  \/  x  =  { (/) } ) )
1211ex 115 . . 3  |-  ( ph  ->  ( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
1312alrimiv 1885 . 2  |-  ( ph  ->  A. x ( x 
C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
14 exmid01 4227 . 2  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
1513, 14sylibr 134 1  |-  ( ph  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835   A.wal 1362    = wceq 1364    =/= wne 2364    C_ wss 3153   (/)c0 3446   {csn 3618  EXMIDwem 4223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-nul 4155
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-exmid 4224
This theorem is referenced by:  pw1fin  6966  exmidonfin  7254  exmidaclem  7268  exmidontri  7299  exmidontri2or  7303
  Copyright terms: Public domain W3C validator