| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmid1dc | Unicode version | ||
| Description: A convenience theorem for
proving that something implies EXMID.
Think of this as an alternative to using a proposition, as in proofs
like undifexmid 4226 or ordtriexmid 4557. In this context |
| Ref | Expression |
|---|---|
| exmid1dc.x |
|
| Ref | Expression |
|---|---|
| exmid1dc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid1dc.x |
. . . . . . 7
| |
| 2 | exmiddc 837 |
. . . . . . 7
| |
| 3 | 1, 2 | syl 14 |
. . . . . 6
|
| 4 | df-ne 2368 |
. . . . . . . . 9
| |
| 5 | pwntru 4232 |
. . . . . . . . . 10
| |
| 6 | 5 | ex 115 |
. . . . . . . . 9
|
| 7 | 4, 6 | biimtrrid 153 |
. . . . . . . 8
|
| 8 | 7 | orim2d 789 |
. . . . . . 7
|
| 9 | 8 | adantl 277 |
. . . . . 6
|
| 10 | 3, 9 | mpd 13 |
. . . . 5
|
| 11 | 10 | orcomd 730 |
. . . 4
|
| 12 | 11 | ex 115 |
. . 3
|
| 13 | 12 | alrimiv 1888 |
. 2
|
| 14 | exmid01 4231 |
. 2
| |
| 15 | 13, 14 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4159 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-exmid 4228 |
| This theorem is referenced by: pw1fin 6971 exmidonfin 7261 exmidaclem 7275 exmidontri 7306 exmidontri2or 7310 |
| Copyright terms: Public domain | W3C validator |