ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmid1dc Unicode version

Theorem exmid1dc 4179
Description: A convenience theorem for proving that something implies EXMID. Think of this as an alternative to using a proposition, as in proofs like undifexmid 4172 or ordtriexmid 4498. In this context  x  =  { (/) } can be thought of as "x is true". (Contributed by Jim Kingdon, 21-Nov-2023.)
Hypothesis
Ref Expression
exmid1dc.x  |-  ( (
ph  /\  x  C_  { (/) } )  -> DECID  x  =  { (/)
} )
Assertion
Ref Expression
exmid1dc  |-  ( ph  -> EXMID )
Distinct variable group:    ph, x

Proof of Theorem exmid1dc
StepHypRef Expression
1 exmid1dc.x . . . . . . 7  |-  ( (
ph  /\  x  C_  { (/) } )  -> DECID  x  =  { (/)
} )
2 exmiddc 826 . . . . . . 7  |-  (DECID  x  =  { (/) }  ->  (
x  =  { (/) }  \/  -.  x  =  { (/) } ) )
31, 2syl 14 . . . . . 6  |-  ( (
ph  /\  x  C_  { (/) } )  ->  ( x  =  { (/) }  \/  -.  x  =  { (/) } ) )
4 df-ne 2337 . . . . . . . . 9  |-  ( x  =/=  { (/) }  <->  -.  x  =  { (/) } )
5 pwntru 4178 . . . . . . . . . 10  |-  ( ( x  C_  { (/) }  /\  x  =/=  { (/) } )  ->  x  =  (/) )
65ex 114 . . . . . . . . 9  |-  ( x 
C_  { (/) }  ->  ( x  =/=  { (/) }  ->  x  =  (/) ) )
74, 6syl5bir 152 . . . . . . . 8  |-  ( x 
C_  { (/) }  ->  ( -.  x  =  { (/)
}  ->  x  =  (/) ) )
87orim2d 778 . . . . . . 7  |-  ( x 
C_  { (/) }  ->  ( ( x  =  { (/)
}  \/  -.  x  =  { (/) } )  -> 
( x  =  { (/)
}  \/  x  =  (/) ) ) )
98adantl 275 . . . . . 6  |-  ( (
ph  /\  x  C_  { (/) } )  ->  ( (
x  =  { (/) }  \/  -.  x  =  { (/) } )  -> 
( x  =  { (/)
}  \/  x  =  (/) ) ) )
103, 9mpd 13 . . . . 5  |-  ( (
ph  /\  x  C_  { (/) } )  ->  ( x  =  { (/) }  \/  x  =  (/) ) )
1110orcomd 719 . . . 4  |-  ( (
ph  /\  x  C_  { (/) } )  ->  ( x  =  (/)  \/  x  =  { (/) } ) )
1211ex 114 . . 3  |-  ( ph  ->  ( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
1312alrimiv 1862 . 2  |-  ( ph  ->  A. x ( x 
C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
14 exmid01 4177 . 2  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
1513, 14sylibr 133 1  |-  ( ph  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824   A.wal 1341    = wceq 1343    =/= wne 2336    C_ wss 3116   (/)c0 3409   {csn 3576  EXMIDwem 4173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-nul 4108
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-exmid 4174
This theorem is referenced by:  pw1fin  6876  exmidonfin  7150  exmidaclem  7164  exmidontri  7195  exmidontri2or  7199
  Copyright terms: Public domain W3C validator