ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmid1dc Unicode version

Theorem exmid1dc 4186
Description: A convenience theorem for proving that something implies EXMID. Think of this as an alternative to using a proposition, as in proofs like undifexmid 4179 or ordtriexmid 4505. In this context  x  =  { (/) } can be thought of as "x is true". (Contributed by Jim Kingdon, 21-Nov-2023.)
Hypothesis
Ref Expression
exmid1dc.x  |-  ( (
ph  /\  x  C_  { (/) } )  -> DECID  x  =  { (/)
} )
Assertion
Ref Expression
exmid1dc  |-  ( ph  -> EXMID )
Distinct variable group:    ph, x

Proof of Theorem exmid1dc
StepHypRef Expression
1 exmid1dc.x . . . . . . 7  |-  ( (
ph  /\  x  C_  { (/) } )  -> DECID  x  =  { (/)
} )
2 exmiddc 831 . . . . . . 7  |-  (DECID  x  =  { (/) }  ->  (
x  =  { (/) }  \/  -.  x  =  { (/) } ) )
31, 2syl 14 . . . . . 6  |-  ( (
ph  /\  x  C_  { (/) } )  ->  ( x  =  { (/) }  \/  -.  x  =  { (/) } ) )
4 df-ne 2341 . . . . . . . . 9  |-  ( x  =/=  { (/) }  <->  -.  x  =  { (/) } )
5 pwntru 4185 . . . . . . . . . 10  |-  ( ( x  C_  { (/) }  /\  x  =/=  { (/) } )  ->  x  =  (/) )
65ex 114 . . . . . . . . 9  |-  ( x 
C_  { (/) }  ->  ( x  =/=  { (/) }  ->  x  =  (/) ) )
74, 6syl5bir 152 . . . . . . . 8  |-  ( x 
C_  { (/) }  ->  ( -.  x  =  { (/)
}  ->  x  =  (/) ) )
87orim2d 783 . . . . . . 7  |-  ( x 
C_  { (/) }  ->  ( ( x  =  { (/)
}  \/  -.  x  =  { (/) } )  -> 
( x  =  { (/)
}  \/  x  =  (/) ) ) )
98adantl 275 . . . . . 6  |-  ( (
ph  /\  x  C_  { (/) } )  ->  ( (
x  =  { (/) }  \/  -.  x  =  { (/) } )  -> 
( x  =  { (/)
}  \/  x  =  (/) ) ) )
103, 9mpd 13 . . . . 5  |-  ( (
ph  /\  x  C_  { (/) } )  ->  ( x  =  { (/) }  \/  x  =  (/) ) )
1110orcomd 724 . . . 4  |-  ( (
ph  /\  x  C_  { (/) } )  ->  ( x  =  (/)  \/  x  =  { (/) } ) )
1211ex 114 . . 3  |-  ( ph  ->  ( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
1312alrimiv 1867 . 2  |-  ( ph  ->  A. x ( x 
C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
14 exmid01 4184 . 2  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
1513, 14sylibr 133 1  |-  ( ph  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703  DECID wdc 829   A.wal 1346    = wceq 1348    =/= wne 2340    C_ wss 3121   (/)c0 3414   {csn 3583  EXMIDwem 4180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-nul 4115
This theorem depends on definitions:  df-bi 116  df-dc 830  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3589  df-exmid 4181
This theorem is referenced by:  pw1fin  6888  exmidonfin  7171  exmidaclem  7185  exmidontri  7216  exmidontri2or  7220
  Copyright terms: Public domain W3C validator