Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmid1dc | Unicode version |
Description: A convenience theorem for proving that something implies EXMID. Think of this as an alternative to using a proposition, as in proofs like undifexmid 4179 or ordtriexmid 4505. In this context can be thought of as "x is true". (Contributed by Jim Kingdon, 21-Nov-2023.) |
Ref | Expression |
---|---|
exmid1dc.x | DECID |
Ref | Expression |
---|---|
exmid1dc | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid1dc.x | . . . . . . 7 DECID | |
2 | exmiddc 831 | . . . . . . 7 DECID | |
3 | 1, 2 | syl 14 | . . . . . 6 |
4 | df-ne 2341 | . . . . . . . . 9 | |
5 | pwntru 4185 | . . . . . . . . . 10 | |
6 | 5 | ex 114 | . . . . . . . . 9 |
7 | 4, 6 | syl5bir 152 | . . . . . . . 8 |
8 | 7 | orim2d 783 | . . . . . . 7 |
9 | 8 | adantl 275 | . . . . . 6 |
10 | 3, 9 | mpd 13 | . . . . 5 |
11 | 10 | orcomd 724 | . . . 4 |
12 | 11 | ex 114 | . . 3 |
13 | 12 | alrimiv 1867 | . 2 |
14 | exmid01 4184 | . 2 EXMID | |
15 | 13, 14 | sylibr 133 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 DECID wdc 829 wal 1346 wceq 1348 wne 2340 wss 3121 c0 3414 csn 3583 EXMIDwem 4180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-nul 4115 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-exmid 4181 |
This theorem is referenced by: pw1fin 6888 exmidonfin 7171 exmidaclem 7185 exmidontri 7216 exmidontri2or 7220 |
Copyright terms: Public domain | W3C validator |