ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opex Unicode version

Theorem opex 4151
Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
opex.1  |-  A  e. 
_V
opex.2  |-  B  e. 
_V
Assertion
Ref Expression
opex  |-  <. A ,  B >.  e.  _V

Proof of Theorem opex
StepHypRef Expression
1 opex.1 . 2  |-  A  e. 
_V
2 opex.2 . 2  |-  B  e. 
_V
3 opexg 4150 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  e. 
_V )
41, 2, 3mp2an 422 1  |-  <. A ,  B >.  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1480   _Vcvv 2686   <.cop 3530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536
This theorem is referenced by:  otth2  4163  opabid  4179  elopab  4180  opabm  4202  elvvv  4602  relsnop  4645  xpiindim  4676  raliunxp  4680  rexiunxp  4681  intirr  4925  xpmlem  4959  dmsnm  5004  dmsnopg  5010  cnvcnvsn  5015  op2ndb  5022  cnviinm  5080  funopg  5157  fsn  5592  fvsn  5615  idref  5658  oprabid  5803  dfoprab2  5818  rnoprab  5854  fo1st  6055  fo2nd  6056  eloprabi  6094  xporderlem  6128  cnvoprab  6131  dmtpos  6153  rntpos  6154  tpostpos  6161  iinerm  6501  th3qlem2  6532  elixpsn  6629  ensn1  6690  mapsnen  6705  xpsnen  6715  xpcomco  6720  xpassen  6724  xpmapenlem  6743  phplem2  6747  ac6sfi  6792  djuss  6955  genipdm  7331  ioof  9761  fsumcnv  11213  txdis1cn  12456
  Copyright terms: Public domain W3C validator