| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opex | Unicode version | ||
| Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| opex.1 |
|
| opex.2 |
|
| Ref | Expression |
|---|---|
| opex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex.1 |
. 2
| |
| 2 | opex.2 |
. 2
| |
| 3 | opexg 4273 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 |
| This theorem is referenced by: otth2 4286 opabid 4303 elopab 4305 opabm 4328 elvvv 4739 relsnop 4782 xpiindim 4816 raliunxp 4820 rexiunxp 4821 intirr 5070 xpmlem 5104 dmsnm 5149 dmsnopg 5155 cnvcnvsn 5160 op2ndb 5167 cnviinm 5225 funopg 5306 fsn 5754 fvsn 5781 idref 5827 oprabid 5978 dfoprab2 5994 rnoprab 6030 fo1st 6245 fo2nd 6246 eloprabi 6284 xporderlem 6319 cnvoprab 6322 dmtpos 6344 rntpos 6345 tpostpos 6352 iinerm 6696 th3qlem2 6727 elixpsn 6824 ensn1 6890 mapsnen 6905 xpsnen 6918 xpcomco 6923 xpassen 6927 xpmapenlem 6948 phplem2 6952 ac6sfi 6997 djuss 7174 genipdm 7631 ioof 10095 wrdexb 11008 fsumcnv 11781 fprodcnv 11969 nninfct 12395 prdsex 13134 fnpsr 14462 txdis1cn 14783 |
| Copyright terms: Public domain | W3C validator |