| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opex | Unicode version | ||
| Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| opex.1 |
|
| opex.2 |
|
| Ref | Expression |
|---|---|
| opex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex.1 |
. 2
| |
| 2 | opex.2 |
. 2
| |
| 3 | opexg 4314 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: otth2 4327 opabid 4344 elopab 4346 opabm 4369 elvvv 4782 relsnop 4825 xpiindim 4859 raliunxp 4863 rexiunxp 4864 intirr 5115 xpmlem 5149 dmsnm 5194 dmsnopg 5200 cnvcnvsn 5205 op2ndb 5212 cnviinm 5270 funopg 5352 fsn 5807 fvsn 5834 idref 5880 oprabid 6033 dfoprab2 6051 rnoprab 6087 fo1st 6303 fo2nd 6304 eloprabi 6342 xporderlem 6377 cnvoprab 6380 dmtpos 6402 rntpos 6403 tpostpos 6410 iinerm 6754 th3qlem2 6785 elixpsn 6882 ensn1 6948 mapsnen 6964 dom1o 6977 xpsnen 6980 xpcomco 6985 xpassen 6989 xpmapenlem 7010 phplem2 7014 ac6sfi 7060 djuss 7237 genipdm 7703 ioof 10167 wrdexb 11083 fsumcnv 11948 fprodcnv 12136 nninfct 12562 prdsex 13302 fnpsr 14631 txdis1cn 14952 |
| Copyright terms: Public domain | W3C validator |