| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opex | Unicode version | ||
| Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.) | 
| Ref | Expression | 
|---|---|
| opex.1 | 
 | 
| opex.2 | 
 | 
| Ref | Expression | 
|---|---|
| opex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opex.1 | 
. 2
 | |
| 2 | opex.2 | 
. 2
 | |
| 3 | opexg 4261 | 
. 2
 | |
| 4 | 1, 2, 3 | mp2an 426 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 | 
| This theorem is referenced by: otth2 4274 opabid 4290 elopab 4292 opabm 4315 elvvv 4726 relsnop 4769 xpiindim 4803 raliunxp 4807 rexiunxp 4808 intirr 5056 xpmlem 5090 dmsnm 5135 dmsnopg 5141 cnvcnvsn 5146 op2ndb 5153 cnviinm 5211 funopg 5292 fsn 5734 fvsn 5757 idref 5803 oprabid 5954 dfoprab2 5969 rnoprab 6005 fo1st 6215 fo2nd 6216 eloprabi 6254 xporderlem 6289 cnvoprab 6292 dmtpos 6314 rntpos 6315 tpostpos 6322 iinerm 6666 th3qlem2 6697 elixpsn 6794 ensn1 6855 mapsnen 6870 xpsnen 6880 xpcomco 6885 xpassen 6889 xpmapenlem 6910 phplem2 6914 ac6sfi 6959 djuss 7136 genipdm 7583 ioof 10046 wrdexb 10947 fsumcnv 11602 fprodcnv 11790 nninfct 12208 prdsex 12940 fnpsr 14221 txdis1cn 14514 | 
| Copyright terms: Public domain | W3C validator |