| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opex | Unicode version | ||
| Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| opex.1 |
|
| opex.2 |
|
| Ref | Expression |
|---|---|
| opex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex.1 |
. 2
| |
| 2 | opex.2 |
. 2
| |
| 3 | opexg 4290 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 |
| This theorem is referenced by: otth2 4303 opabid 4320 elopab 4322 opabm 4345 elvvv 4756 relsnop 4799 xpiindim 4833 raliunxp 4837 rexiunxp 4838 intirr 5088 xpmlem 5122 dmsnm 5167 dmsnopg 5173 cnvcnvsn 5178 op2ndb 5185 cnviinm 5243 funopg 5324 fsn 5775 fvsn 5802 idref 5848 oprabid 5999 dfoprab2 6015 rnoprab 6051 fo1st 6266 fo2nd 6267 eloprabi 6305 xporderlem 6340 cnvoprab 6343 dmtpos 6365 rntpos 6366 tpostpos 6373 iinerm 6717 th3qlem2 6748 elixpsn 6845 ensn1 6911 mapsnen 6927 xpsnen 6941 xpcomco 6946 xpassen 6950 xpmapenlem 6971 phplem2 6975 ac6sfi 7021 djuss 7198 genipdm 7664 ioof 10128 wrdexb 11043 fsumcnv 11863 fprodcnv 12051 nninfct 12477 prdsex 13216 fnpsr 14544 txdis1cn 14865 dom1o 16128 |
| Copyright terms: Public domain | W3C validator |