ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opex Unicode version

Theorem opex 4207
Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
opex.1  |-  A  e. 
_V
opex.2  |-  B  e. 
_V
Assertion
Ref Expression
opex  |-  <. A ,  B >.  e.  _V

Proof of Theorem opex
StepHypRef Expression
1 opex.1 . 2  |-  A  e. 
_V
2 opex.2 . 2  |-  B  e. 
_V
3 opexg 4206 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  e. 
_V )
41, 2, 3mp2an 423 1  |-  <. A ,  B >.  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   _Vcvv 2726   <.cop 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585
This theorem is referenced by:  otth2  4219  opabid  4235  elopab  4236  opabm  4258  elvvv  4667  relsnop  4710  xpiindim  4741  raliunxp  4745  rexiunxp  4746  intirr  4990  xpmlem  5024  dmsnm  5069  dmsnopg  5075  cnvcnvsn  5080  op2ndb  5087  cnviinm  5145  funopg  5222  fsn  5657  fvsn  5680  idref  5725  oprabid  5874  dfoprab2  5889  rnoprab  5925  fo1st  6125  fo2nd  6126  eloprabi  6164  xporderlem  6199  cnvoprab  6202  dmtpos  6224  rntpos  6225  tpostpos  6232  iinerm  6573  th3qlem2  6604  elixpsn  6701  ensn1  6762  mapsnen  6777  xpsnen  6787  xpcomco  6792  xpassen  6796  xpmapenlem  6815  phplem2  6819  ac6sfi  6864  djuss  7035  genipdm  7457  ioof  9907  fsumcnv  11378  fprodcnv  11566  txdis1cn  12918
  Copyright terms: Public domain W3C validator