| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opex | Unicode version | ||
| Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| opex.1 |
|
| opex.2 |
|
| Ref | Expression |
|---|---|
| opex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex.1 |
. 2
| |
| 2 | opex.2 |
. 2
| |
| 3 | opexg 4272 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 |
| This theorem is referenced by: otth2 4285 opabid 4302 elopab 4304 opabm 4327 elvvv 4738 relsnop 4781 xpiindim 4815 raliunxp 4819 rexiunxp 4820 intirr 5069 xpmlem 5103 dmsnm 5148 dmsnopg 5154 cnvcnvsn 5159 op2ndb 5166 cnviinm 5224 funopg 5305 fsn 5752 fvsn 5779 idref 5825 oprabid 5976 dfoprab2 5992 rnoprab 6028 fo1st 6243 fo2nd 6244 eloprabi 6282 xporderlem 6317 cnvoprab 6320 dmtpos 6342 rntpos 6343 tpostpos 6350 iinerm 6694 th3qlem2 6725 elixpsn 6822 ensn1 6888 mapsnen 6903 xpsnen 6916 xpcomco 6921 xpassen 6925 xpmapenlem 6946 phplem2 6950 ac6sfi 6995 djuss 7172 genipdm 7629 ioof 10093 wrdexb 11006 fsumcnv 11748 fprodcnv 11936 nninfct 12362 prdsex 13101 fnpsr 14429 txdis1cn 14750 |
| Copyright terms: Public domain | W3C validator |