![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opex | Unicode version |
Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
opex.1 |
![]() ![]() ![]() ![]() |
opex.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
opex |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | opex.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | opexg 4258 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mp2an 426 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 |
This theorem is referenced by: otth2 4271 opabid 4287 elopab 4289 opabm 4312 elvvv 4723 relsnop 4766 xpiindim 4800 raliunxp 4804 rexiunxp 4805 intirr 5053 xpmlem 5087 dmsnm 5132 dmsnopg 5138 cnvcnvsn 5143 op2ndb 5150 cnviinm 5208 funopg 5289 fsn 5731 fvsn 5754 idref 5800 oprabid 5951 dfoprab2 5966 rnoprab 6002 fo1st 6212 fo2nd 6213 eloprabi 6251 xporderlem 6286 cnvoprab 6289 dmtpos 6311 rntpos 6312 tpostpos 6319 iinerm 6663 th3qlem2 6694 elixpsn 6791 ensn1 6852 mapsnen 6867 xpsnen 6877 xpcomco 6882 xpassen 6886 xpmapenlem 6907 phplem2 6911 ac6sfi 6956 djuss 7131 genipdm 7578 ioof 10040 wrdexb 10929 fsumcnv 11583 fprodcnv 11771 nninfct 12181 prdsex 12883 fnpsr 14164 txdis1cn 14457 |
Copyright terms: Public domain | W3C validator |