Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opex | Unicode version |
Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
opex.1 | |
opex.2 |
Ref | Expression |
---|---|
opex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex.1 | . 2 | |
2 | opex.2 | . 2 | |
3 | opexg 4211 | . 2 | |
4 | 1, 2, 3 | mp2an 424 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2141 cvv 2730 cop 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 |
This theorem is referenced by: otth2 4224 opabid 4240 elopab 4241 opabm 4263 elvvv 4672 relsnop 4715 xpiindim 4746 raliunxp 4750 rexiunxp 4751 intirr 4995 xpmlem 5029 dmsnm 5074 dmsnopg 5080 cnvcnvsn 5085 op2ndb 5092 cnviinm 5150 funopg 5230 fsn 5666 fvsn 5689 idref 5734 oprabid 5883 dfoprab2 5898 rnoprab 5934 fo1st 6134 fo2nd 6135 eloprabi 6173 xporderlem 6208 cnvoprab 6211 dmtpos 6233 rntpos 6234 tpostpos 6241 iinerm 6582 th3qlem2 6613 elixpsn 6710 ensn1 6771 mapsnen 6786 xpsnen 6796 xpcomco 6801 xpassen 6805 xpmapenlem 6824 phplem2 6828 ac6sfi 6873 djuss 7044 genipdm 7467 ioof 9917 fsumcnv 11389 fprodcnv 11577 txdis1cn 13033 |
Copyright terms: Public domain | W3C validator |