Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opexg | Unicode version |
Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 11-Jan-2019.) |
Ref | Expression |
---|---|
opexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopg 3763 | . 2 | |
2 | elex 2741 | . . . . 5 | |
3 | snexg 4170 | . . . . 5 | |
4 | 2, 3 | syl 14 | . . . 4 |
5 | 4 | adantr 274 | . . 3 |
6 | elex 2741 | . . . 4 | |
7 | prexg 4196 | . . . 4 | |
8 | 2, 6, 7 | syl2an 287 | . . 3 |
9 | prexg 4196 | . . 3 | |
10 | 5, 8, 9 | syl2anc 409 | . 2 |
11 | 1, 10 | eqeltrd 2247 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2141 cvv 2730 csn 3583 cpr 3584 cop 3586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 |
This theorem is referenced by: opex 4214 otexg 4215 opeliunxp 4666 opbrop 4690 relsnopg 4715 opswapg 5097 elxp4 5098 elxp5 5099 resfunexg 5717 fliftel 5772 fliftel1 5773 oprabid 5885 ovexg 5887 eloprabga 5940 op1st 6125 op2nd 6126 ot1stg 6131 ot2ndg 6132 ot3rdgg 6133 elxp6 6148 mpofvex 6182 algrflem 6208 algrflemg 6209 mpoxopoveq 6219 brtposg 6233 tfr0dm 6301 tfrlemisucaccv 6304 tfrlemibxssdm 6306 tfrlemibfn 6307 tfrlemi14d 6312 tfr1onlemsucaccv 6320 tfr1onlembxssdm 6322 tfr1onlembfn 6323 tfr1onlemres 6328 tfrcllemsucaccv 6333 tfrcllembxssdm 6335 tfrcllembfn 6336 tfrcllemres 6341 fnfi 6914 djulclb 7032 inl11 7042 1stinl 7051 2ndinl 7052 1stinr 7053 2ndinr 7054 mulpipq2 7333 enq0breq 7398 addvalex 7806 peano2nnnn 7815 axcnre 7843 frec2uzrdg 10365 frecuzrdg0 10369 frecuzrdgg 10372 frecuzrdg0t 10378 zfz1isolem1 10775 eucalgval2 12007 crth 12178 phimullem 12179 ennnfonelemp1 12361 setsvala 12447 setsex 12448 setsfun 12451 setsfun0 12452 setsresg 12454 setscom 12456 strslfv 12460 setsslid 12466 strle1g 12508 1strbas 12517 2strbasg 12519 2stropg 12520 2strbas1g 12522 2strop1g 12523 rngbaseg 12534 rngplusgg 12535 rngmulrg 12536 srngbased 12541 srngplusgd 12542 srngmulrd 12543 srnginvld 12544 lmodbased 12552 lmodplusgd 12553 lmodscad 12554 lmodvscad 12555 ipsbased 12560 ipsaddgd 12561 ipsmulrd 12562 ipsscad 12563 ipsvscad 12564 ipsipd 12565 topgrpbasd 12570 topgrpplusgd 12571 topgrptsetd 12572 intopsn 12621 mgm1 12624 sgrp1 12651 mnd1 12679 mnd1id 12680 txlm 13073 |
Copyright terms: Public domain | W3C validator |