![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opexg | Unicode version |
Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 11-Jan-2019.) |
Ref | Expression |
---|---|
opexg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopg 3802 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | elex 2771 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | snexg 4213 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl 14 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | adantr 276 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | elex 2771 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | prexg 4240 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 2, 6, 7 | syl2an 289 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | prexg 4240 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 5, 8, 9 | syl2anc 411 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 1, 10 | eqeltrd 2270 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 |
This theorem is referenced by: opex 4258 otexg 4259 opeliunxp 4714 opbrop 4738 relsnopg 4763 opswapg 5152 elxp4 5153 elxp5 5154 resfunexg 5779 fliftel 5836 fliftel1 5837 oprabid 5950 ovexg 5952 eloprabga 6005 op1st 6199 op2nd 6200 ot1stg 6205 ot2ndg 6206 ot3rdgg 6207 elxp6 6222 mpofvex 6256 algrflem 6282 algrflemg 6283 mpoxopoveq 6293 brtposg 6307 tfr0dm 6375 tfrlemisucaccv 6378 tfrlemibxssdm 6380 tfrlemibfn 6381 tfrlemi14d 6386 tfr1onlemsucaccv 6394 tfr1onlembxssdm 6396 tfr1onlembfn 6397 tfr1onlemres 6402 tfrcllemsucaccv 6407 tfrcllembxssdm 6409 tfrcllembfn 6410 tfrcllemres 6415 fnfi 6995 djulclb 7114 inl11 7124 1stinl 7133 2ndinl 7134 1stinr 7135 2ndinr 7136 mulpipq2 7431 enq0breq 7496 addvalex 7904 peano2nnnn 7913 axcnre 7941 frec2uzrdg 10480 frecuzrdg0 10484 frecuzrdgg 10487 frecuzrdg0t 10493 zfz1isolem1 10911 eucalgval2 12191 crth 12362 phimullem 12363 ennnfonelemp1 12563 setsvala 12649 setsex 12650 setsfun 12653 setsfun0 12654 setsresg 12656 setscom 12658 strslfv 12663 setsslid 12669 strle1g 12724 1strbas 12735 2strbasg 12737 2stropg 12738 2strbas1g 12740 2strop1g 12741 rngbaseg 12753 rngplusgg 12754 rngmulrg 12755 srngbased 12764 srngplusgd 12765 srngmulrd 12766 srnginvld 12767 lmodbased 12782 lmodplusgd 12783 lmodscad 12784 lmodvscad 12785 ipsbased 12794 ipsaddgd 12795 ipsmulrd 12796 ipsscad 12797 ipsvscad 12798 ipsipd 12799 topgrpbasd 12814 topgrpplusgd 12815 topgrptsetd 12816 prdsex 12880 imasex 12888 imasival 12889 imasbas 12890 imasplusg 12891 imasmulr 12892 imasaddfnlemg 12897 imasaddvallemg 12898 xpsfval 12931 xpsval 12935 intopsn 12950 mgm1 12953 sgrp1 12994 mnd1 13027 mnd1id 13028 grp1 13178 grp1inv 13179 ring1 13555 psrval 14152 fnpsr 14153 psrbasg 14159 psrplusgg 14162 txlm 14447 |
Copyright terms: Public domain | W3C validator |