| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opexg | Unicode version | ||
| Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 11-Jan-2019.) |
| Ref | Expression |
|---|---|
| opexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfopg 3807 |
. 2
| |
| 2 | elex 2774 |
. . . . 5
| |
| 3 | snexg 4218 |
. . . . 5
| |
| 4 | 2, 3 | syl 14 |
. . . 4
|
| 5 | 4 | adantr 276 |
. . 3
|
| 6 | elex 2774 |
. . . 4
| |
| 7 | prexg 4245 |
. . . 4
| |
| 8 | 2, 6, 7 | syl2an 289 |
. . 3
|
| 9 | prexg 4245 |
. . 3
| |
| 10 | 5, 8, 9 | syl2anc 411 |
. 2
|
| 11 | 1, 10 | eqeltrd 2273 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 |
| This theorem is referenced by: opex 4263 otexg 4264 opeliunxp 4719 opbrop 4743 relsnopg 4768 opswapg 5157 elxp4 5158 elxp5 5159 resfunexg 5786 fliftel 5843 fliftel1 5844 oprabid 5957 ovexg 5959 ovssunirng 5960 eloprabga 6013 op1st 6213 op2nd 6214 ot1stg 6219 ot2ndg 6220 ot3rdgg 6221 elxp6 6236 mpofvex 6272 algrflem 6296 algrflemg 6297 mpoxopoveq 6307 brtposg 6321 tfr0dm 6389 tfrlemisucaccv 6392 tfrlemibxssdm 6394 tfrlemibfn 6395 tfrlemi14d 6400 tfr1onlemsucaccv 6408 tfr1onlembxssdm 6410 tfr1onlembfn 6411 tfr1onlemres 6416 tfrcllemsucaccv 6421 tfrcllembxssdm 6423 tfrcllembfn 6424 tfrcllemres 6429 fnfi 7011 djulclb 7130 inl11 7140 1stinl 7149 2ndinl 7150 1stinr 7151 2ndinr 7152 mulpipq2 7457 enq0breq 7522 addvalex 7930 peano2nnnn 7939 axcnre 7967 frec2uzrdg 10520 frecuzrdg0 10524 frecuzrdgg 10527 frecuzrdg0t 10533 zfz1isolem1 10951 eucalgval2 12248 crth 12419 phimullem 12420 ennnfonelemp1 12650 setsvala 12736 setsex 12737 setsfun 12740 setsfun0 12741 setsresg 12743 setscom 12745 strslfv 12750 strslfv3 12751 setsslid 12756 strle1g 12811 1strbas 12822 2strbasg 12824 2stropg 12825 2strbas1g 12827 2strop1g 12828 rngbaseg 12840 rngplusgg 12841 rngmulrg 12842 srngbased 12851 srngplusgd 12852 srngmulrd 12853 srnginvld 12854 lmodbased 12869 lmodplusgd 12870 lmodscad 12871 lmodvscad 12872 ipsbased 12881 ipsaddgd 12882 ipsmulrd 12883 ipsscad 12884 ipsvscad 12885 ipsipd 12886 topgrpbasd 12901 topgrpplusgd 12902 topgrptsetd 12903 prdsex 12973 prdsval 12977 imasex 13009 imasival 13010 imasbas 13011 imasplusg 13012 imasmulr 13013 imasaddfnlemg 13018 imasaddvallemg 13019 xpsfval 13052 xpsval 13056 intopsn 13071 mgm1 13074 sgrp1 13115 mnd1 13159 mnd1id 13160 grp1 13310 grp1inv 13311 ring1 13693 psrval 14300 fnpsr 14301 psrbasg 14308 psrplusgg 14312 txlm 14623 |
| Copyright terms: Public domain | W3C validator |