| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opexg | Unicode version | ||
| Description: An ordered pair of sets is a set. (Contributed by Jim Kingdon, 11-Jan-2019.) |
| Ref | Expression |
|---|---|
| opexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfopg 3807 |
. 2
| |
| 2 | elex 2774 |
. . . . 5
| |
| 3 | snexg 4218 |
. . . . 5
| |
| 4 | 2, 3 | syl 14 |
. . . 4
|
| 5 | 4 | adantr 276 |
. . 3
|
| 6 | elex 2774 |
. . . 4
| |
| 7 | prexg 4245 |
. . . 4
| |
| 8 | 2, 6, 7 | syl2an 289 |
. . 3
|
| 9 | prexg 4245 |
. . 3
| |
| 10 | 5, 8, 9 | syl2anc 411 |
. 2
|
| 11 | 1, 10 | eqeltrd 2273 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 |
| This theorem is referenced by: opex 4263 otexg 4264 opeliunxp 4719 opbrop 4743 relsnopg 4768 opswapg 5157 elxp4 5158 elxp5 5159 resfunexg 5786 fliftel 5843 fliftel1 5844 oprabid 5957 ovexg 5959 ovssunirng 5960 eloprabga 6013 op1st 6213 op2nd 6214 ot1stg 6219 ot2ndg 6220 ot3rdgg 6221 elxp6 6236 mpofvex 6272 algrflem 6296 algrflemg 6297 mpoxopoveq 6307 brtposg 6321 tfr0dm 6389 tfrlemisucaccv 6392 tfrlemibxssdm 6394 tfrlemibfn 6395 tfrlemi14d 6400 tfr1onlemsucaccv 6408 tfr1onlembxssdm 6410 tfr1onlembfn 6411 tfr1onlemres 6416 tfrcllemsucaccv 6421 tfrcllembxssdm 6423 tfrcllembfn 6424 tfrcllemres 6429 fnfi 7011 djulclb 7130 inl11 7140 1stinl 7149 2ndinl 7150 1stinr 7151 2ndinr 7152 mulpipq2 7455 enq0breq 7520 addvalex 7928 peano2nnnn 7937 axcnre 7965 frec2uzrdg 10518 frecuzrdg0 10522 frecuzrdgg 10525 frecuzrdg0t 10531 zfz1isolem1 10949 eucalgval2 12246 crth 12417 phimullem 12418 ennnfonelemp1 12648 setsvala 12734 setsex 12735 setsfun 12738 setsfun0 12739 setsresg 12741 setscom 12743 strslfv 12748 strslfv3 12749 setsslid 12754 strle1g 12809 1strbas 12820 2strbasg 12822 2stropg 12823 2strbas1g 12825 2strop1g 12826 rngbaseg 12838 rngplusgg 12839 rngmulrg 12840 srngbased 12849 srngplusgd 12850 srngmulrd 12851 srnginvld 12852 lmodbased 12867 lmodplusgd 12868 lmodscad 12869 lmodvscad 12870 ipsbased 12879 ipsaddgd 12880 ipsmulrd 12881 ipsscad 12882 ipsvscad 12883 ipsipd 12884 topgrpbasd 12899 topgrpplusgd 12900 topgrptsetd 12901 prdsex 12971 prdsval 12975 imasex 13007 imasival 13008 imasbas 13009 imasplusg 13010 imasmulr 13011 imasaddfnlemg 13016 imasaddvallemg 13017 xpsfval 13050 xpsval 13054 intopsn 13069 mgm1 13072 sgrp1 13113 mnd1 13157 mnd1id 13158 grp1 13308 grp1inv 13309 ring1 13691 psrval 14296 fnpsr 14297 psrbasg 14303 psrplusgg 14306 txlm 14599 |
| Copyright terms: Public domain | W3C validator |