![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > otexg | GIF version |
Description: An ordered triple of sets is a set. (Contributed by Jim Kingdon, 19-Sep-2018.) |
Ref | Expression |
---|---|
otexg | ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ⟨𝐴, 𝐵, 𝐶⟩ ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 3604 | . . 3 ⊢ ⟨𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ | |
2 | opexg 4230 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → ⟨𝐴, 𝐵⟩ ∈ V) | |
3 | opexg 4230 | . . . 4 ⊢ ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶 ∈ 𝑊) → ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ V) | |
4 | 2, 3 | sylan 283 | . . 3 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝐶 ∈ 𝑊) → ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ V) |
5 | 1, 4 | eqeltrid 2264 | . 2 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝐶 ∈ 𝑊) → ⟨𝐴, 𝐵, 𝐶⟩ ∈ V) |
6 | 5 | 3impa 1194 | 1 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ⟨𝐴, 𝐵, 𝐶⟩ ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 ∈ wcel 2148 Vcvv 2739 ⟨cop 3597 ⟨cotp 3598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-ot 3604 |
This theorem is referenced by: euotd 4256 |
Copyright terms: Public domain | W3C validator |