ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  otexg GIF version

Theorem otexg 4273
Description: An ordered triple of sets is a set. (Contributed by Jim Kingdon, 19-Sep-2018.)
Assertion
Ref Expression
otexg ((𝐴𝑈𝐵𝑉𝐶𝑊) → ⟨𝐴, 𝐵, 𝐶⟩ ∈ V)

Proof of Theorem otexg
StepHypRef Expression
1 df-ot 3642 . . 3 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
2 opexg 4271 . . . 4 ((𝐴𝑈𝐵𝑉) → ⟨𝐴, 𝐵⟩ ∈ V)
3 opexg 4271 . . . 4 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶𝑊) → ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ V)
42, 3sylan 283 . . 3 (((𝐴𝑈𝐵𝑉) ∧ 𝐶𝑊) → ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ V)
51, 4eqeltrid 2291 . 2 (((𝐴𝑈𝐵𝑉) ∧ 𝐶𝑊) → ⟨𝐴, 𝐵, 𝐶⟩ ∈ V)
653impa 1196 1 ((𝐴𝑈𝐵𝑉𝐶𝑊) → ⟨𝐴, 𝐵, 𝐶⟩ ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2175  Vcvv 2771  cop 3635  cotp 3636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-ot 3642
This theorem is referenced by:  euotd  4298
  Copyright terms: Public domain W3C validator