![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > otexg | GIF version |
Description: An ordered triple of sets is a set. (Contributed by Jim Kingdon, 19-Sep-2018.) |
Ref | Expression |
---|---|
otexg | ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 〈𝐴, 𝐵, 𝐶〉 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 3476 | . . 3 ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 | |
2 | opexg 4079 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → 〈𝐴, 𝐵〉 ∈ V) | |
3 | opexg 4079 | . . . 4 ⊢ ((〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ 𝑊) → 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ V) | |
4 | 2, 3 | sylan 278 | . . 3 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝐶 ∈ 𝑊) → 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ V) |
5 | 1, 4 | syl5eqel 2181 | . 2 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝐶 ∈ 𝑊) → 〈𝐴, 𝐵, 𝐶〉 ∈ V) |
6 | 5 | 3impa 1141 | 1 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 〈𝐴, 𝐵, 𝐶〉 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 927 ∈ wcel 1445 Vcvv 2633 〈cop 3469 〈cotp 3470 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-ot 3476 |
This theorem is referenced by: euotd 4105 |
Copyright terms: Public domain | W3C validator |