| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impa | Unicode version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impa.1 |
|
| Ref | Expression |
|---|---|
| 3impa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impa.1 |
. . 3
| |
| 2 | 1 | exp31 364 |
. 2
|
| 3 | 2 | 3imp 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ex3 1198 3impdir 1307 syl3an9b 1323 biimp3a 1358 stoic3 1451 rspec3 2596 rspc3v 2893 raltpg 3686 rextpg 3687 disjiun 4040 otexg 4275 opelopabt 4309 tpexg 4492 3optocl 4754 fun2ssres 5315 funssfv 5604 fvun1 5647 foco2 5824 f1elima 5844 eloprabga 6034 caovimo 6142 ot1stg 6240 ot2ndg 6241 ot3rdgg 6242 brtposg 6342 rdgexggg 6465 rdgivallem 6469 nnmass 6575 nndir 6578 nnaword 6599 th3q 6729 ecovass 6733 ecoviass 6734 fpmg 6763 findcard 6987 unfiin 7025 addasspig 7445 mulasspig 7447 mulcanpig 7450 ltapig 7453 ltmpig 7454 addassnqg 7497 ltbtwnnqq 7530 mulnnnq0 7565 addassnq0 7577 genpassl 7639 genpassu 7640 genpassg 7641 aptiprleml 7754 adddir 8065 le2tri3i 8183 addsub12 8287 subdir 8460 reapmul1 8670 recexaplem2 8727 div12ap 8769 divdiv32ap 8795 divdivap1 8798 lble 9022 zaddcllemneg 9413 fnn0ind 9491 xrltso 9920 iccgelb 10056 elicc4 10064 elfz 10138 fzrevral 10229 expnegap0 10694 expgt0 10719 expge0 10722 expge1 10723 mulexpzap 10726 expp1zap 10735 expm1ap 10736 apexp1 10865 ccatsymb 11061 abssubap0 11434 binom 11828 dvds0lem 12145 dvdsnegb 12152 muldvds1 12160 muldvds2 12161 divalgmodcl 12272 gcd2n0cl 12323 lcmdvds 12434 prmdvdsexp 12503 rpexp1i 12509 eqglact 13594 lss0cl 14164 cnpval 14703 cnf2 14710 cnnei 14737 blssec 14943 blpnfctr 14944 mopni2 14988 mopni3 14989 dvply1 15270 |
| Copyright terms: Public domain | W3C validator |