![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3impa | Unicode version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impa.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3impa |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impa.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | exp31 364 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | 3imp 1195 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: ex3 1197 3impdir 1305 syl3an9b 1321 biimp3a 1356 stoic3 1442 rspec3 2584 rspc3v 2880 raltpg 3671 rextpg 3672 disjiun 4024 otexg 4259 opelopabt 4292 tpexg 4475 3optocl 4737 fun2ssres 5297 funssfv 5580 fvun1 5623 foco2 5796 f1elima 5816 eloprabga 6005 caovimo 6112 ot1stg 6205 ot2ndg 6206 ot3rdgg 6207 brtposg 6307 rdgexggg 6430 rdgivallem 6434 nnmass 6540 nndir 6543 nnaword 6564 th3q 6694 ecovass 6698 ecoviass 6699 fpmg 6728 findcard 6944 unfiin 6982 addasspig 7390 mulasspig 7392 mulcanpig 7395 ltapig 7398 ltmpig 7399 addassnqg 7442 ltbtwnnqq 7475 mulnnnq0 7510 addassnq0 7522 genpassl 7584 genpassu 7585 genpassg 7586 aptiprleml 7699 adddir 8010 le2tri3i 8128 addsub12 8232 subdir 8405 reapmul1 8614 recexaplem2 8671 div12ap 8713 divdiv32ap 8739 divdivap1 8742 lble 8966 zaddcllemneg 9356 fnn0ind 9433 xrltso 9862 iccgelb 9998 elicc4 10006 elfz 10080 fzrevral 10171 expnegap0 10618 expgt0 10643 expge0 10646 expge1 10647 mulexpzap 10650 expp1zap 10659 expm1ap 10660 apexp1 10789 abssubap0 11234 binom 11627 dvds0lem 11944 dvdsnegb 11951 muldvds1 11959 muldvds2 11960 divalgmodcl 12069 gcd2n0cl 12106 lcmdvds 12217 prmdvdsexp 12286 rpexp1i 12292 eqglact 13295 lss0cl 13865 cnpval 14366 cnf2 14373 cnnei 14400 blssec 14606 blpnfctr 14607 mopni2 14651 mopni3 14652 |
Copyright terms: Public domain | W3C validator |