| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impa | Unicode version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impa.1 |
|
| Ref | Expression |
|---|---|
| 3impa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impa.1 |
. . 3
| |
| 2 | 1 | exp31 364 |
. 2
|
| 3 | 2 | 3imp 1217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: ex3 1219 3impdir 1328 syl3an9b 1344 biimp3a 1379 stoic3 1473 rspec3 2620 rspc3v 2923 raltpg 3719 rextpg 3720 disjiun 4078 otexg 4316 opelopabt 4350 tpexg 4535 3optocl 4797 fun2ssres 5361 funssfv 5653 fvun1 5700 foco2 5877 f1elima 5897 eloprabga 6091 caovimo 6199 ot1stg 6298 ot2ndg 6299 ot3rdgg 6300 brtposg 6400 rdgexggg 6523 rdgivallem 6527 nnmass 6633 nndir 6636 nnaword 6657 th3q 6787 ecovass 6791 ecoviass 6792 fpmg 6821 findcard 7050 unfiin 7088 pr1or2 7367 addasspig 7517 mulasspig 7519 mulcanpig 7522 ltapig 7525 ltmpig 7526 addassnqg 7569 ltbtwnnqq 7602 mulnnnq0 7637 addassnq0 7649 genpassl 7711 genpassu 7712 genpassg 7713 aptiprleml 7826 adddir 8137 le2tri3i 8255 addsub12 8359 subdir 8532 reapmul1 8742 recexaplem2 8799 div12ap 8841 divdiv32ap 8867 divdivap1 8870 lble 9094 zaddcllemneg 9485 fnn0ind 9563 xrltso 9992 iccgelb 10128 elicc4 10136 elfz 10210 fzrevral 10301 expnegap0 10769 expgt0 10794 expge0 10797 expge1 10798 mulexpzap 10801 expp1zap 10810 expm1ap 10811 apexp1 10940 ccatsymb 11137 abssubap0 11601 binom 11995 dvds0lem 12312 dvdsnegb 12319 muldvds1 12327 muldvds2 12328 divalgmodcl 12439 gcd2n0cl 12490 lcmdvds 12601 prmdvdsexp 12670 rpexp1i 12676 eqglact 13762 lss0cl 14333 cnpval 14872 cnf2 14879 cnnei 14906 blssec 15112 blpnfctr 15113 mopni2 15157 mopni3 15158 dvply1 15439 uhgrm 15878 upgrm 15900 upgr1or2 15901 |
| Copyright terms: Public domain | W3C validator |