| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impa | Unicode version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impa.1 |
|
| Ref | Expression |
|---|---|
| 3impa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impa.1 |
. . 3
| |
| 2 | 1 | exp31 364 |
. 2
|
| 3 | 2 | 3imp 1195 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ex3 1197 3impdir 1305 syl3an9b 1321 biimp3a 1356 stoic3 1442 rspec3 2587 rspc3v 2884 raltpg 3675 rextpg 3676 disjiun 4028 otexg 4263 opelopabt 4296 tpexg 4479 3optocl 4741 fun2ssres 5301 funssfv 5584 fvun1 5627 foco2 5800 f1elima 5820 eloprabga 6009 caovimo 6117 ot1stg 6210 ot2ndg 6211 ot3rdgg 6212 brtposg 6312 rdgexggg 6435 rdgivallem 6439 nnmass 6545 nndir 6548 nnaword 6569 th3q 6699 ecovass 6703 ecoviass 6704 fpmg 6733 findcard 6949 unfiin 6987 addasspig 7397 mulasspig 7399 mulcanpig 7402 ltapig 7405 ltmpig 7406 addassnqg 7449 ltbtwnnqq 7482 mulnnnq0 7517 addassnq0 7529 genpassl 7591 genpassu 7592 genpassg 7593 aptiprleml 7706 adddir 8017 le2tri3i 8135 addsub12 8239 subdir 8412 reapmul1 8622 recexaplem2 8679 div12ap 8721 divdiv32ap 8747 divdivap1 8750 lble 8974 zaddcllemneg 9365 fnn0ind 9442 xrltso 9871 iccgelb 10007 elicc4 10015 elfz 10089 fzrevral 10180 expnegap0 10639 expgt0 10664 expge0 10667 expge1 10668 mulexpzap 10671 expp1zap 10680 expm1ap 10681 apexp1 10810 abssubap0 11255 binom 11649 dvds0lem 11966 dvdsnegb 11973 muldvds1 11981 muldvds2 11982 divalgmodcl 12093 gcd2n0cl 12136 lcmdvds 12247 prmdvdsexp 12316 rpexp1i 12322 eqglact 13355 lss0cl 13925 cnpval 14434 cnf2 14441 cnnei 14468 blssec 14674 blpnfctr 14675 mopni2 14719 mopni3 14720 dvply1 15001 |
| Copyright terms: Public domain | W3C validator |