![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3impa | Unicode version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impa.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3impa |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impa.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | exp31 364 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | 3imp 1195 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: ex3 1197 3impdir 1305 syl3an9b 1321 biimp3a 1356 stoic3 1442 rspec3 2584 rspc3v 2881 raltpg 3672 rextpg 3673 disjiun 4025 otexg 4260 opelopabt 4293 tpexg 4476 3optocl 4738 fun2ssres 5298 funssfv 5581 fvun1 5624 foco2 5797 f1elima 5817 eloprabga 6006 caovimo 6114 ot1stg 6207 ot2ndg 6208 ot3rdgg 6209 brtposg 6309 rdgexggg 6432 rdgivallem 6436 nnmass 6542 nndir 6545 nnaword 6566 th3q 6696 ecovass 6700 ecoviass 6701 fpmg 6730 findcard 6946 unfiin 6984 addasspig 7392 mulasspig 7394 mulcanpig 7397 ltapig 7400 ltmpig 7401 addassnqg 7444 ltbtwnnqq 7477 mulnnnq0 7512 addassnq0 7524 genpassl 7586 genpassu 7587 genpassg 7588 aptiprleml 7701 adddir 8012 le2tri3i 8130 addsub12 8234 subdir 8407 reapmul1 8616 recexaplem2 8673 div12ap 8715 divdiv32ap 8741 divdivap1 8744 lble 8968 zaddcllemneg 9359 fnn0ind 9436 xrltso 9865 iccgelb 10001 elicc4 10009 elfz 10083 fzrevral 10174 expnegap0 10621 expgt0 10646 expge0 10649 expge1 10650 mulexpzap 10653 expp1zap 10662 expm1ap 10663 apexp1 10792 abssubap0 11237 binom 11630 dvds0lem 11947 dvdsnegb 11954 muldvds1 11962 muldvds2 11963 divalgmodcl 12072 gcd2n0cl 12109 lcmdvds 12220 prmdvdsexp 12289 rpexp1i 12295 eqglact 13298 lss0cl 13868 cnpval 14377 cnf2 14384 cnnei 14411 blssec 14617 blpnfctr 14618 mopni2 14662 mopni3 14663 dvply1 14943 |
Copyright terms: Public domain | W3C validator |