| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impa | Unicode version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impa.1 |
|
| Ref | Expression |
|---|---|
| 3impa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impa.1 |
. . 3
| |
| 2 | 1 | exp31 364 |
. 2
|
| 3 | 2 | 3imp 1195 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ex3 1197 3impdir 1305 syl3an9b 1321 biimp3a 1356 stoic3 1442 rspec3 2587 rspc3v 2884 raltpg 3676 rextpg 3677 disjiun 4029 otexg 4264 opelopabt 4297 tpexg 4480 3optocl 4742 fun2ssres 5302 funssfv 5587 fvun1 5630 foco2 5803 f1elima 5823 eloprabga 6013 caovimo 6121 ot1stg 6219 ot2ndg 6220 ot3rdgg 6221 brtposg 6321 rdgexggg 6444 rdgivallem 6448 nnmass 6554 nndir 6557 nnaword 6578 th3q 6708 ecovass 6712 ecoviass 6713 fpmg 6742 findcard 6958 unfiin 6996 addasspig 7414 mulasspig 7416 mulcanpig 7419 ltapig 7422 ltmpig 7423 addassnqg 7466 ltbtwnnqq 7499 mulnnnq0 7534 addassnq0 7546 genpassl 7608 genpassu 7609 genpassg 7610 aptiprleml 7723 adddir 8034 le2tri3i 8152 addsub12 8256 subdir 8429 reapmul1 8639 recexaplem2 8696 div12ap 8738 divdiv32ap 8764 divdivap1 8767 lble 8991 zaddcllemneg 9382 fnn0ind 9459 xrltso 9888 iccgelb 10024 elicc4 10032 elfz 10106 fzrevral 10197 expnegap0 10656 expgt0 10681 expge0 10684 expge1 10685 mulexpzap 10688 expp1zap 10697 expm1ap 10698 apexp1 10827 abssubap0 11272 binom 11666 dvds0lem 11983 dvdsnegb 11990 muldvds1 11998 muldvds2 11999 divalgmodcl 12110 gcd2n0cl 12161 lcmdvds 12272 prmdvdsexp 12341 rpexp1i 12347 eqglact 13431 lss0cl 14001 cnpval 14518 cnf2 14525 cnnei 14552 blssec 14758 blpnfctr 14759 mopni2 14803 mopni3 14804 dvply1 15085 |
| Copyright terms: Public domain | W3C validator |