Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3impa | Unicode version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impa.1 |
Ref | Expression |
---|---|
3impa |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impa.1 | . . 3 | |
2 | 1 | exp31 362 | . 2 |
3 | 2 | 3imp 1183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: ex3 1185 3impdir 1284 syl3an9b 1300 biimp3a 1335 stoic3 1419 rspec3 2556 rspc3v 2846 raltpg 3629 rextpg 3630 disjiun 3977 otexg 4208 opelopabt 4240 tpexg 4422 3optocl 4682 fun2ssres 5231 funssfv 5512 fvun1 5552 foco2 5722 f1elima 5741 eloprabga 5929 caovimo 6035 ot1stg 6120 ot2ndg 6121 ot3rdgg 6122 brtposg 6222 rdgexggg 6345 rdgivallem 6349 nnmass 6455 nndir 6458 nnaword 6479 th3q 6606 ecovass 6610 ecoviass 6611 fpmg 6640 findcard 6854 unfiin 6891 addasspig 7271 mulasspig 7273 mulcanpig 7276 ltapig 7279 ltmpig 7280 addassnqg 7323 ltbtwnnqq 7356 mulnnnq0 7391 addassnq0 7403 genpassl 7465 genpassu 7466 genpassg 7467 aptiprleml 7580 adddir 7890 le2tri3i 8007 addsub12 8111 subdir 8284 reapmul1 8493 recexaplem2 8549 div12ap 8590 divdiv32ap 8616 divdivap1 8619 lble 8842 zaddcllemneg 9230 fnn0ind 9307 xrltso 9732 iccgelb 9868 elicc4 9876 elfz 9950 fzrevral 10040 expnegap0 10463 expgt0 10488 expge0 10491 expge1 10492 mulexpzap 10495 expp1zap 10504 expm1ap 10505 apexp1 10631 abssubap0 11032 binom 11425 dvds0lem 11741 dvdsnegb 11748 muldvds1 11756 muldvds2 11757 divalgmodcl 11865 gcd2n0cl 11902 lcmdvds 12011 prmdvdsexp 12080 rpexp1i 12086 cnpval 12838 cnf2 12845 cnnei 12872 blssec 13078 blpnfctr 13079 mopni2 13123 mopni3 13124 |
Copyright terms: Public domain | W3C validator |