ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zesq Unicode version

Theorem zesq 10518
Description: An integer is even iff its square is even. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
zesq  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  <->  ( ( N ^ 2 )  / 
2 )  e.  ZZ ) )

Proof of Theorem zesq
StepHypRef Expression
1 zcn 9155 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
2 sqval 10459 . . . . . . 7  |-  ( N  e.  CC  ->  ( N ^ 2 )  =  ( N  x.  N
) )
31, 2syl 14 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  =  ( N  x.  N
) )
43oveq1d 5833 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  /  2 )  =  ( ( N  x.  N )  / 
2 ) )
5 2cnd 8889 . . . . . 6  |-  ( N  e.  ZZ  ->  2  e.  CC )
6 2ap0 8909 . . . . . . 7  |-  2 #  0
76a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  2 #  0 )
81, 1, 5, 7divassapd 8682 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N  x.  N
)  /  2 )  =  ( N  x.  ( N  /  2
) ) )
94, 8eqtrd 2190 . . . 4  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  /  2 )  =  ( N  x.  ( N  /  2
) ) )
109adantr 274 . . 3  |-  ( ( N  e.  ZZ  /\  ( N  /  2
)  e.  ZZ )  ->  ( ( N ^ 2 )  / 
2 )  =  ( N  x.  ( N  /  2 ) ) )
11 zmulcl 9203 . . 3  |-  ( ( N  e.  ZZ  /\  ( N  /  2
)  e.  ZZ )  ->  ( N  x.  ( N  /  2
) )  e.  ZZ )
1210, 11eqeltrd 2234 . 2  |-  ( ( N  e.  ZZ  /\  ( N  /  2
)  e.  ZZ )  ->  ( ( N ^ 2 )  / 
2 )  e.  ZZ )
131adantr 274 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  N  e.  CC )
14 sqcl 10462 . . . . . . . . . . 11  |-  ( N  e.  CC  ->  ( N ^ 2 )  e.  CC )
1513, 14syl 14 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( N ^
2 )  e.  CC )
16 peano2cn 7993 . . . . . . . . . 10  |-  ( ( N ^ 2 )  e.  CC  ->  (
( N ^ 2 )  +  1 )  e.  CC )
1715, 16syl 14 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N ^ 2 )  +  1 )  e.  CC )
1817halfcld 9060 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N ^ 2 )  +  1 )  / 
2 )  e.  CC )
1918, 13pncand 8170 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( ( N ^
2 )  +  1 )  /  2 )  +  N )  -  N )  =  ( ( ( N ^
2 )  +  1 )  /  2 ) )
20 binom21 10512 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  (
( N  +  1 ) ^ 2 )  =  ( ( ( N ^ 2 )  +  ( 2  x.  N ) )  +  1 ) )
2113, 20syl 14 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 ) ^
2 )  =  ( ( ( N ^
2 )  +  ( 2  x.  N ) )  +  1 ) )
22 peano2cn 7993 . . . . . . . . . . . . . 14  |-  ( N  e.  CC  ->  ( N  +  1 )  e.  CC )
2313, 22syl 14 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( N  + 
1 )  e.  CC )
24 sqval 10459 . . . . . . . . . . . . 13  |-  ( ( N  +  1 )  e.  CC  ->  (
( N  +  1 ) ^ 2 )  =  ( ( N  +  1 )  x.  ( N  +  1 ) ) )
2523, 24syl 14 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 ) ^
2 )  =  ( ( N  +  1 )  x.  ( N  +  1 ) ) )
26 2cn 8887 . . . . . . . . . . . . . 14  |-  2  e.  CC
27 mulcl 7842 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  N  e.  CC )  ->  ( 2  x.  N
)  e.  CC )
2826, 13, 27sylancr 411 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( 2  x.  N )  e.  CC )
29 1cnd 7877 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  1  e.  CC )
3015, 28, 29add32d 8026 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N ^ 2 )  +  ( 2  x.  N ) )  +  1 )  =  ( ( ( N ^
2 )  +  1 )  +  ( 2  x.  N ) ) )
3121, 25, 303eqtr3d 2198 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 )  x.  ( N  +  1 ) )  =  ( ( ( N ^
2 )  +  1 )  +  ( 2  x.  N ) ) )
3231oveq1d 5833 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N  +  1 )  x.  ( N  + 
1 ) )  / 
2 )  =  ( ( ( ( N ^ 2 )  +  1 )  +  ( 2  x.  N ) )  /  2 ) )
33 2cnd 8889 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  2  e.  CC )
346a1i 9 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  2 #  0 )
3523, 23, 33, 34divassapd 8682 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N  +  1 )  x.  ( N  + 
1 ) )  / 
2 )  =  ( ( N  +  1 )  x.  ( ( N  +  1 )  /  2 ) ) )
3617, 28, 33, 34divdirapd 8685 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( N ^ 2 )  +  1 )  +  ( 2  x.  N ) )  / 
2 )  =  ( ( ( ( N ^ 2 )  +  1 )  /  2
)  +  ( ( 2  x.  N )  /  2 ) ) )
3713, 33, 34divcanap3d 8651 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( 2  x.  N )  / 
2 )  =  N )
3837oveq2d 5834 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( N ^ 2 )  +  1 )  /  2 )  +  ( ( 2  x.  N )  /  2
) )  =  ( ( ( ( N ^ 2 )  +  1 )  /  2
)  +  N ) )
3936, 38eqtrd 2190 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( N ^ 2 )  +  1 )  +  ( 2  x.  N ) )  / 
2 )  =  ( ( ( ( N ^ 2 )  +  1 )  /  2
)  +  N ) )
4032, 35, 393eqtr3d 2198 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 )  x.  ( ( N  + 
1 )  /  2
) )  =  ( ( ( ( N ^ 2 )  +  1 )  /  2
)  +  N ) )
41 peano2z 9186 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )
42 zmulcl 9203 . . . . . . . . . 10  |-  ( ( ( N  +  1 )  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 )  x.  ( ( N  + 
1 )  /  2
) )  e.  ZZ )
4341, 42sylan 281 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 )  x.  ( ( N  + 
1 )  /  2
) )  e.  ZZ )
4440, 43eqeltrrd 2235 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( N ^ 2 )  +  1 )  /  2 )  +  N )  e.  ZZ )
45 simpl 108 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  N  e.  ZZ )
4644, 45zsubcld 9274 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( ( N ^
2 )  +  1 )  /  2 )  +  N )  -  N )  e.  ZZ )
4719, 46eqeltrrd 2235 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N ^ 2 )  +  1 )  / 
2 )  e.  ZZ )
4847ex 114 . . . . 5  |-  ( N  e.  ZZ  ->  (
( ( N  + 
1 )  /  2
)  e.  ZZ  ->  ( ( ( N ^
2 )  +  1 )  /  2 )  e.  ZZ ) )
4948con3d 621 . . . 4  |-  ( N  e.  ZZ  ->  ( -.  ( ( ( N ^ 2 )  +  1 )  /  2
)  e.  ZZ  ->  -.  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
50 zsqcl 10471 . . . . 5  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  e.  ZZ )
51 zeo2 9253 . . . . 5  |-  ( ( N ^ 2 )  e.  ZZ  ->  (
( ( N ^
2 )  /  2
)  e.  ZZ  <->  -.  (
( ( N ^
2 )  +  1 )  /  2 )  e.  ZZ ) )
5250, 51syl 14 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( N ^
2 )  /  2
)  e.  ZZ  <->  -.  (
( ( N ^
2 )  +  1 )  /  2 )  e.  ZZ ) )
53 zeo2 9253 . . . 4  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  <->  -.  (
( N  +  1 )  /  2 )  e.  ZZ ) )
5449, 52, 533imtr4d 202 . . 3  |-  ( N  e.  ZZ  ->  (
( ( N ^
2 )  /  2
)  e.  ZZ  ->  ( N  /  2 )  e.  ZZ ) )
5554imp 123 . 2  |-  ( ( N  e.  ZZ  /\  ( ( N ^
2 )  /  2
)  e.  ZZ )  ->  ( N  / 
2 )  e.  ZZ )
5612, 55impbida 586 1  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  <->  ( ( N ^ 2 )  / 
2 )  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   class class class wbr 3965  (class class class)co 5818   CCcc 7713   0cc0 7715   1c1 7716    + caddc 7718    x. cmul 7720    - cmin 8029   # cap 8439    / cdiv 8528   2c2 8867   ZZcz 9150   ^cexp 10400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-frec 6332  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-n0 9074  df-z 9151  df-uz 9423  df-seqfrec 10327  df-exp 10401
This theorem is referenced by:  nnesq  10519  sqrt2irrlem  12015
  Copyright terms: Public domain W3C validator