ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zesq Unicode version

Theorem zesq 10805
Description: An integer is even iff its square is even. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
zesq  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  <->  ( ( N ^ 2 )  / 
2 )  e.  ZZ ) )

Proof of Theorem zesq
StepHypRef Expression
1 zcn 9379 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
2 sqval 10744 . . . . . . 7  |-  ( N  e.  CC  ->  ( N ^ 2 )  =  ( N  x.  N
) )
31, 2syl 14 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  =  ( N  x.  N
) )
43oveq1d 5961 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  /  2 )  =  ( ( N  x.  N )  / 
2 ) )
5 2cnd 9111 . . . . . 6  |-  ( N  e.  ZZ  ->  2  e.  CC )
6 2ap0 9131 . . . . . . 7  |-  2 #  0
76a1i 9 . . . . . 6  |-  ( N  e.  ZZ  ->  2 #  0 )
81, 1, 5, 7divassapd 8901 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N  x.  N
)  /  2 )  =  ( N  x.  ( N  /  2
) ) )
94, 8eqtrd 2238 . . . 4  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  /  2 )  =  ( N  x.  ( N  /  2
) ) )
109adantr 276 . . 3  |-  ( ( N  e.  ZZ  /\  ( N  /  2
)  e.  ZZ )  ->  ( ( N ^ 2 )  / 
2 )  =  ( N  x.  ( N  /  2 ) ) )
11 zmulcl 9428 . . 3  |-  ( ( N  e.  ZZ  /\  ( N  /  2
)  e.  ZZ )  ->  ( N  x.  ( N  /  2
) )  e.  ZZ )
1210, 11eqeltrd 2282 . 2  |-  ( ( N  e.  ZZ  /\  ( N  /  2
)  e.  ZZ )  ->  ( ( N ^ 2 )  / 
2 )  e.  ZZ )
131adantr 276 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  N  e.  CC )
14 sqcl 10747 . . . . . . . . . . 11  |-  ( N  e.  CC  ->  ( N ^ 2 )  e.  CC )
1513, 14syl 14 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( N ^
2 )  e.  CC )
16 peano2cn 8209 . . . . . . . . . 10  |-  ( ( N ^ 2 )  e.  CC  ->  (
( N ^ 2 )  +  1 )  e.  CC )
1715, 16syl 14 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N ^ 2 )  +  1 )  e.  CC )
1817halfcld 9284 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N ^ 2 )  +  1 )  / 
2 )  e.  CC )
1918, 13pncand 8386 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( ( N ^
2 )  +  1 )  /  2 )  +  N )  -  N )  =  ( ( ( N ^
2 )  +  1 )  /  2 ) )
20 binom21 10799 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  (
( N  +  1 ) ^ 2 )  =  ( ( ( N ^ 2 )  +  ( 2  x.  N ) )  +  1 ) )
2113, 20syl 14 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 ) ^
2 )  =  ( ( ( N ^
2 )  +  ( 2  x.  N ) )  +  1 ) )
22 peano2cn 8209 . . . . . . . . . . . . . 14  |-  ( N  e.  CC  ->  ( N  +  1 )  e.  CC )
2313, 22syl 14 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( N  + 
1 )  e.  CC )
24 sqval 10744 . . . . . . . . . . . . 13  |-  ( ( N  +  1 )  e.  CC  ->  (
( N  +  1 ) ^ 2 )  =  ( ( N  +  1 )  x.  ( N  +  1 ) ) )
2523, 24syl 14 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 ) ^
2 )  =  ( ( N  +  1 )  x.  ( N  +  1 ) ) )
26 2cn 9109 . . . . . . . . . . . . . 14  |-  2  e.  CC
27 mulcl 8054 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  N  e.  CC )  ->  ( 2  x.  N
)  e.  CC )
2826, 13, 27sylancr 414 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( 2  x.  N )  e.  CC )
29 1cnd 8090 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  1  e.  CC )
3015, 28, 29add32d 8242 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N ^ 2 )  +  ( 2  x.  N ) )  +  1 )  =  ( ( ( N ^
2 )  +  1 )  +  ( 2  x.  N ) ) )
3121, 25, 303eqtr3d 2246 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 )  x.  ( N  +  1 ) )  =  ( ( ( N ^
2 )  +  1 )  +  ( 2  x.  N ) ) )
3231oveq1d 5961 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N  +  1 )  x.  ( N  + 
1 ) )  / 
2 )  =  ( ( ( ( N ^ 2 )  +  1 )  +  ( 2  x.  N ) )  /  2 ) )
33 2cnd 9111 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  2  e.  CC )
346a1i 9 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  2 #  0 )
3523, 23, 33, 34divassapd 8901 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N  +  1 )  x.  ( N  + 
1 ) )  / 
2 )  =  ( ( N  +  1 )  x.  ( ( N  +  1 )  /  2 ) ) )
3617, 28, 33, 34divdirapd 8904 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( N ^ 2 )  +  1 )  +  ( 2  x.  N ) )  / 
2 )  =  ( ( ( ( N ^ 2 )  +  1 )  /  2
)  +  ( ( 2  x.  N )  /  2 ) ) )
3713, 33, 34divcanap3d 8870 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( 2  x.  N )  / 
2 )  =  N )
3837oveq2d 5962 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( N ^ 2 )  +  1 )  /  2 )  +  ( ( 2  x.  N )  /  2
) )  =  ( ( ( ( N ^ 2 )  +  1 )  /  2
)  +  N ) )
3936, 38eqtrd 2238 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( N ^ 2 )  +  1 )  +  ( 2  x.  N ) )  / 
2 )  =  ( ( ( ( N ^ 2 )  +  1 )  /  2
)  +  N ) )
4032, 35, 393eqtr3d 2246 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 )  x.  ( ( N  + 
1 )  /  2
) )  =  ( ( ( ( N ^ 2 )  +  1 )  /  2
)  +  N ) )
41 peano2z 9410 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )
42 zmulcl 9428 . . . . . . . . . 10  |-  ( ( ( N  +  1 )  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 )  x.  ( ( N  + 
1 )  /  2
) )  e.  ZZ )
4341, 42sylan 283 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 )  x.  ( ( N  + 
1 )  /  2
) )  e.  ZZ )
4440, 43eqeltrrd 2283 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( N ^ 2 )  +  1 )  /  2 )  +  N )  e.  ZZ )
45 simpl 109 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  N  e.  ZZ )
4644, 45zsubcld 9502 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( ( N ^
2 )  +  1 )  /  2 )  +  N )  -  N )  e.  ZZ )
4719, 46eqeltrrd 2283 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N ^ 2 )  +  1 )  / 
2 )  e.  ZZ )
4847ex 115 . . . . 5  |-  ( N  e.  ZZ  ->  (
( ( N  + 
1 )  /  2
)  e.  ZZ  ->  ( ( ( N ^
2 )  +  1 )  /  2 )  e.  ZZ ) )
4948con3d 632 . . . 4  |-  ( N  e.  ZZ  ->  ( -.  ( ( ( N ^ 2 )  +  1 )  /  2
)  e.  ZZ  ->  -.  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
50 zsqcl 10757 . . . . 5  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  e.  ZZ )
51 zeo2 9481 . . . . 5  |-  ( ( N ^ 2 )  e.  ZZ  ->  (
( ( N ^
2 )  /  2
)  e.  ZZ  <->  -.  (
( ( N ^
2 )  +  1 )  /  2 )  e.  ZZ ) )
5250, 51syl 14 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( N ^
2 )  /  2
)  e.  ZZ  <->  -.  (
( ( N ^
2 )  +  1 )  /  2 )  e.  ZZ ) )
53 zeo2 9481 . . . 4  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  <->  -.  (
( N  +  1 )  /  2 )  e.  ZZ ) )
5449, 52, 533imtr4d 203 . . 3  |-  ( N  e.  ZZ  ->  (
( ( N ^
2 )  /  2
)  e.  ZZ  ->  ( N  /  2 )  e.  ZZ ) )
5554imp 124 . 2  |-  ( ( N  e.  ZZ  /\  ( ( N ^
2 )  /  2
)  e.  ZZ )  ->  ( N  / 
2 )  e.  ZZ )
5612, 55impbida 596 1  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  <->  ( ( N ^ 2 )  / 
2 )  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   class class class wbr 4045  (class class class)co 5946   CCcc 7925   0cc0 7927   1c1 7928    + caddc 7930    x. cmul 7932    - cmin 8245   # cap 8656    / cdiv 8747   2c2 9089   ZZcz 9374   ^cexp 10685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-n0 9298  df-z 9375  df-uz 9651  df-seqfrec 10595  df-exp 10686
This theorem is referenced by:  nnesq  10806  sqrt2irrlem  12516
  Copyright terms: Public domain W3C validator