ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odd2np1 Unicode version

Theorem odd2np1 11892
Description: An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
Distinct variable group:    n, N

Proof of Theorem odd2np1
Dummy variables  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 9295 . . . 4  |-  2  e.  ZZ
2 divides 11810 . . . 4  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  ||  N  <->  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
31, 2mpan 424 . . 3  |-  ( N  e.  ZZ  ->  (
2  ||  N  <->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
43notbid 668 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  -.  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
5 elznn0 9282 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
6 odd2np1lem 11891 . . . . . 6  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
76adantl 277 . . . . 5  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  -> 
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
8 odd2np1lem 11891 . . . . . . 7  |-  ( -u N  e.  NN0  ->  ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  -u N  \/  E. y  e.  ZZ  ( y  x.  2 )  =  -u N
) )
9 peano2z 9303 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  (
x  +  1 )  e.  ZZ )
10 znegcl 9298 . . . . . . . . . . . . 13  |-  ( ( x  +  1 )  e.  ZZ  ->  -u (
x  +  1 )  e.  ZZ )
119, 10syl 14 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  -u (
x  +  1 )  e.  ZZ )
1211ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  x  e.  ZZ )  /\  ( ( 2  x.  x )  +  1 )  =  -u N )  ->  -u (
x  +  1 )  e.  ZZ )
13 zcn 9272 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  x  e.  CC )
14 2cn 9004 . . . . . . . . . . . . . . . . . 18  |-  2  e.  CC
15 mulcl 7952 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  x
)  e.  CC )
1614, 15mpan 424 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
2  x.  x )  e.  CC )
17 peano2cn 8106 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  x.  x )  e.  CC  ->  (
( 2  x.  x
)  +  1 )  e.  CC )
1816, 17syl 14 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
( 2  x.  x
)  +  1 )  e.  CC )
1913, 18syl 14 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  +  1 )  e.  CC )
2019adantl 277 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( 2  x.  x )  +  1 )  e.  CC )
21 simpl 109 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  N  e.  RR )
2221recnd 8000 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  N  e.  CC )
23 negcon2 8224 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2  x.  x )  +  1 )  e.  CC  /\  N  e.  CC )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N 
<->  N  =  -u (
( 2  x.  x
)  +  1 ) ) )
2420, 22, 23syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N 
<->  N  =  -u (
( 2  x.  x
)  +  1 ) ) )
25 eqcom 2189 . . . . . . . . . . . . . 14  |-  ( N  =  -u ( ( 2  x.  x )  +  1 )  <->  -u ( ( 2  x.  x )  +  1 )  =  N )
2614, 13, 15sylancr 414 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ZZ  ->  (
2  x.  x )  e.  CC )
27 ax-1cn 7918 . . . . . . . . . . . . . . . . . . . . . . 23  |-  1  e.  CC
2814, 27mulcli 7976 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  x.  1 )  e.  CC
29 addsubass 8181 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 2  x.  x
)  e.  CC  /\  ( 2  x.  1 )  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  x )  +  ( 2  x.  1 ) )  -  1 )  =  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  - 
1 ) ) )
3028, 27, 29mp3an23 1339 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  x )  e.  CC  ->  (
( ( 2  x.  x )  +  ( 2  x.  1 ) )  -  1 )  =  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  -  1 ) ) )
3126, 30syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  ( 2  x.  1 ) )  -  1 )  =  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  -  1 ) ) )
32 2t1e2 9086 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2  x.  1 )  =  2
3332oveq1i 5898 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  x.  1 )  -  1 )  =  ( 2  -  1 )
34 2m1e1 9051 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  -  1 )  =  1
3533, 34eqtri 2208 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  1 )  -  1 )  =  1
3635oveq2i 5899 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  - 
1 ) )  =  ( ( 2  x.  x )  +  1 )
3731, 36eqtr2di 2237 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  +  1 )  =  ( ( ( 2  x.  x )  +  ( 2  x.  1 ) )  - 
1 ) )
38 adddi 7957 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  e.  CC  /\  x  e.  CC  /\  1  e.  CC )  ->  (
2  x.  ( x  +  1 ) )  =  ( ( 2  x.  x )  +  ( 2  x.  1 ) ) )
3914, 27, 38mp3an13 1338 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  CC  ->  (
2  x.  ( x  +  1 ) )  =  ( ( 2  x.  x )  +  ( 2  x.  1 ) ) )
4013, 39syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
2  x.  ( x  +  1 ) )  =  ( ( 2  x.  x )  +  ( 2  x.  1 ) ) )
4140oveq1d 5903 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
( 2  x.  (
x  +  1 ) )  -  1 )  =  ( ( ( 2  x.  x )  +  ( 2  x.  1 ) )  - 
1 ) )
4237, 41eqtr4d 2223 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  +  1 )  =  ( ( 2  x.  ( x  + 
1 ) )  - 
1 ) )
4342negeqd 8166 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  -u (
( 2  x.  x
)  +  1 )  =  -u ( ( 2  x.  ( x  + 
1 ) )  - 
1 ) )
449zcnd 9390 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
x  +  1 )  e.  CC )
45 mulneg2 8367 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  CC  /\  ( x  +  1
)  e.  CC )  ->  ( 2  x.  -u ( x  +  1 ) )  =  -u ( 2  x.  (
x  +  1 ) ) )
4614, 44, 45sylancr 414 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
2  x.  -u (
x  +  1 ) )  =  -u (
2  x.  ( x  +  1 ) ) )
4746oveq1d 5903 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  (
( 2  x.  -u (
x  +  1 ) )  +  1 )  =  ( -u (
2  x.  ( x  +  1 ) )  +  1 ) )
48 mulcl 7952 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  CC  /\  ( x  +  1
)  e.  CC )  ->  ( 2  x.  ( x  +  1 ) )  e.  CC )
4914, 44, 48sylancr 414 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
2  x.  ( x  +  1 ) )  e.  CC )
50 negsubdi 8227 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 2  x.  (
x  +  1 ) )  e.  CC  /\  1  e.  CC )  -> 
-u ( ( 2  x.  ( x  + 
1 ) )  - 
1 )  =  (
-u ( 2  x.  ( x  +  1 ) )  +  1 ) )
5149, 27, 50sylancl 413 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  -u (
( 2  x.  (
x  +  1 ) )  -  1 )  =  ( -u (
2  x.  ( x  +  1 ) )  +  1 ) )
5247, 51eqtr4d 2223 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
( 2  x.  -u (
x  +  1 ) )  +  1 )  =  -u ( ( 2  x.  ( x  + 
1 ) )  - 
1 ) )
5343, 52eqtr4d 2223 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  -u (
( 2  x.  x
)  +  1 )  =  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 ) )
5453adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  -> 
-u ( ( 2  x.  x )  +  1 )  =  ( ( 2  x.  -u (
x  +  1 ) )  +  1 ) )
5554eqeq1d 2196 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( -u ( ( 2  x.  x )  +  1 )  =  N  <->  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 )  =  N ) )
5625, 55bitrid 192 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( N  =  -u ( ( 2  x.  x )  +  1 )  <->  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 )  =  N ) )
5724, 56bitrd 188 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N 
<->  ( ( 2  x.  -u ( x  +  1 ) )  +  1 )  =  N ) )
5857biimpa 296 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  x  e.  ZZ )  /\  ( ( 2  x.  x )  +  1 )  =  -u N )  ->  (
( 2  x.  -u (
x  +  1 ) )  +  1 )  =  N )
59 oveq2 5896 . . . . . . . . . . . . . 14  |-  ( n  =  -u ( x  + 
1 )  ->  (
2  x.  n )  =  ( 2  x.  -u ( x  +  1 ) ) )
6059oveq1d 5903 . . . . . . . . . . . . 13  |-  ( n  =  -u ( x  + 
1 )  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 ) )
6160eqeq1d 2196 . . . . . . . . . . . 12  |-  ( n  =  -u ( x  + 
1 )  ->  (
( ( 2  x.  n )  +  1 )  =  N  <->  ( (
2  x.  -u (
x  +  1 ) )  +  1 )  =  N ) )
6261rspcev 2853 . . . . . . . . . . 11  |-  ( (
-u ( x  + 
1 )  e.  ZZ  /\  ( ( 2  x.  -u ( x  +  1 ) )  +  1 )  =  N )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N )
6312, 58, 62syl2anc 411 . . . . . . . . . 10  |-  ( ( ( N  e.  RR  /\  x  e.  ZZ )  /\  ( ( 2  x.  x )  +  1 )  =  -u N )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N )
6463ex 115 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
6564rexlimdva 2604 . . . . . . . 8  |-  ( N  e.  RR  ->  ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  -u N  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
66 znegcl 9298 . . . . . . . . . . . 12  |-  ( y  e.  ZZ  ->  -u y  e.  ZZ )
6766ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  y  e.  ZZ )  /\  ( y  x.  2 )  =  -u N )  ->  -u y  e.  ZZ )
68 zcn 9272 . . . . . . . . . . . . . . 15  |-  ( y  e.  ZZ  ->  y  e.  CC )
69 mulcl 7952 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  CC  /\  2  e.  CC )  ->  ( y  x.  2 )  e.  CC )
7068, 14, 69sylancl 413 . . . . . . . . . . . . . 14  |-  ( y  e.  ZZ  ->  (
y  x.  2 )  e.  CC )
71 recn 7958 . . . . . . . . . . . . . 14  |-  ( N  e.  RR  ->  N  e.  CC )
72 negcon2 8224 . . . . . . . . . . . . . 14  |-  ( ( ( y  x.  2 )  e.  CC  /\  N  e.  CC )  ->  ( ( y  x.  2 )  =  -u N 
<->  N  =  -u (
y  x.  2 ) ) )
7370, 71, 72syl2anr 290 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  -u N 
<->  N  =  -u (
y  x.  2 ) ) )
74 eqcom 2189 . . . . . . . . . . . . . 14  |-  ( N  =  -u ( y  x.  2 )  <->  -u ( y  x.  2 )  =  N )
75 mulneg1 8366 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  CC  /\  2  e.  CC )  ->  ( -u y  x.  2 )  =  -u ( y  x.  2 ) )
7668, 14, 75sylancl 413 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ZZ  ->  ( -u y  x.  2 )  =  -u ( y  x.  2 ) )
7776adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( -u y  x.  2 )  =  -u ( y  x.  2 ) )
7877eqeq1d 2196 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( -u y  x.  2 )  =  N  <->  -u ( y  x.  2 )  =  N ) )
7974, 78bitr4id 199 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( N  =  -u ( y  x.  2 )  <->  ( -u y  x.  2 )  =  N ) )
8073, 79bitrd 188 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  -u N 
<->  ( -u y  x.  2 )  =  N ) )
8180biimpa 296 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  y  e.  ZZ )  /\  ( y  x.  2 )  =  -u N )  ->  ( -u y  x.  2 )  =  N )
82 oveq1 5895 . . . . . . . . . . . . 13  |-  ( k  =  -u y  ->  (
k  x.  2 )  =  ( -u y  x.  2 ) )
8382eqeq1d 2196 . . . . . . . . . . . 12  |-  ( k  =  -u y  ->  (
( k  x.  2 )  =  N  <->  ( -u y  x.  2 )  =  N ) )
8483rspcev 2853 . . . . . . . . . . 11  |-  ( (
-u y  e.  ZZ  /\  ( -u y  x.  2 )  =  N )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N )
8567, 81, 84syl2anc 411 . . . . . . . . . 10  |-  ( ( ( N  e.  RR  /\  y  e.  ZZ )  /\  ( y  x.  2 )  =  -u N )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N )
8685ex 115 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  -u N  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
8786rexlimdva 2604 . . . . . . . 8  |-  ( N  e.  RR  ->  ( E. y  e.  ZZ  ( y  x.  2 )  =  -u N  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
8865, 87orim12d 787 . . . . . . 7  |-  ( N  e.  RR  ->  (
( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  -u N  \/  E. y  e.  ZZ  ( y  x.  2 )  =  -u N )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) ) )
898, 88syl5 32 . . . . . 6  |-  ( N  e.  RR  ->  ( -u N  e.  NN0  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) ) )
9089imp 124 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
917, 90jaodan 798 . . . 4  |-  ( ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
925, 91sylbi 121 . . 3  |-  ( N  e.  ZZ  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
93 halfnz 9363 . . . 4  |-  -.  (
1  /  2 )  e.  ZZ
94 reeanv 2657 . . . . 5  |-  ( E. n  e.  ZZ  E. k  e.  ZZ  (
( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  <-> 
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
95 eqtr3 2207 . . . . . . 7  |-  ( ( ( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  ->  ( ( 2  x.  n )  +  1 )  =  ( k  x.  2 ) )
96 zcn 9272 . . . . . . . . . . 11  |-  ( k  e.  ZZ  ->  k  e.  CC )
97 mulcom 7954 . . . . . . . . . . 11  |-  ( ( k  e.  CC  /\  2  e.  CC )  ->  ( k  x.  2 )  =  ( 2  x.  k ) )
9896, 14, 97sylancl 413 . . . . . . . . . 10  |-  ( k  e.  ZZ  ->  (
k  x.  2 )  =  ( 2  x.  k ) )
9998eqeq2d 2199 . . . . . . . . 9  |-  ( k  e.  ZZ  ->  (
( ( 2  x.  n )  +  1 )  =  ( k  x.  2 )  <->  ( (
2  x.  n )  +  1 )  =  ( 2  x.  k
) ) )
10099adantl 277 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  ( k  x.  2 )  <-> 
( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
101 mulcl 7952 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  k  e.  CC )  ->  ( 2  x.  k
)  e.  CC )
10214, 96, 101sylancr 414 . . . . . . . . . 10  |-  ( k  e.  ZZ  ->  (
2  x.  k )  e.  CC )
103 zcn 9272 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  n  e.  CC )
104 mulcl 7952 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  n  e.  CC )  ->  ( 2  x.  n
)  e.  CC )
10514, 103, 104sylancr 414 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  (
2  x.  n )  e.  CC )
106 subadd 8174 . . . . . . . . . . 11  |-  ( ( ( 2  x.  k
)  e.  CC  /\  ( 2  x.  n
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n
) )  =  1  <-> 
( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
10727, 106mp3an3 1336 . . . . . . . . . 10  |-  ( ( ( 2  x.  k
)  e.  CC  /\  ( 2  x.  n
)  e.  CC )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n ) )  =  1  <->  ( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
108102, 105, 107syl2anr 290 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n
) )  =  1  <-> 
( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
109 subcl 8170 . . . . . . . . . . . . . 14  |-  ( ( k  e.  CC  /\  n  e.  CC )  ->  ( k  -  n
)  e.  CC )
110 2ap0 9026 . . . . . . . . . . . . . . . 16  |-  2 #  0
11114, 110pm3.2i 272 . . . . . . . . . . . . . . 15  |-  ( 2  e.  CC  /\  2 #  0 )
112 eqcom 2189 . . . . . . . . . . . . . . . 16  |-  ( ( k  -  n )  =  ( 1  / 
2 )  <->  ( 1  /  2 )  =  ( k  -  n
) )
113 divmulap 8646 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  ( k  -  n
)  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 ) )  ->  ( ( 1  /  2 )  =  ( k  -  n
)  <->  ( 2  x.  ( k  -  n
) )  =  1 ) )
114112, 113bitrid 192 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  CC  /\  ( k  -  n
)  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 ) )  ->  ( ( k  -  n )  =  ( 1  /  2
)  <->  ( 2  x.  ( k  -  n
) )  =  1 ) )
11527, 111, 114mp3an13 1338 . . . . . . . . . . . . . 14  |-  ( ( k  -  n )  e.  CC  ->  (
( k  -  n
)  =  ( 1  /  2 )  <->  ( 2  x.  ( k  -  n ) )  =  1 ) )
116109, 115syl 14 . . . . . . . . . . . . 13  |-  ( ( k  e.  CC  /\  n  e.  CC )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( 2  x.  (
k  -  n ) )  =  1 ) )
117116ancoms 268 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( 2  x.  (
k  -  n ) )  =  1 ) )
118 subdi 8356 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  k  e.  CC  /\  n  e.  CC )  ->  (
2  x.  ( k  -  n ) )  =  ( ( 2  x.  k )  -  ( 2  x.  n
) ) )
11914, 118mp3an1 1334 . . . . . . . . . . . . . 14  |-  ( ( k  e.  CC  /\  n  e.  CC )  ->  ( 2  x.  (
k  -  n ) )  =  ( ( 2  x.  k )  -  ( 2  x.  n ) ) )
120119ancoms 268 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( 2  x.  (
k  -  n ) )  =  ( ( 2  x.  k )  -  ( 2  x.  n ) ) )
121120eqeq1d 2196 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( ( 2  x.  ( k  -  n
) )  =  1  <-> 
( ( 2  x.  k )  -  (
2  x.  n ) )  =  1 ) )
122117, 121bitrd 188 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( ( 2  x.  k )  -  (
2  x.  n ) )  =  1 ) )
123103, 96, 122syl2an 289 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( ( 2  x.  k )  -  (
2  x.  n ) )  =  1 ) )
124 zsubcl 9308 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  n  e.  ZZ )  ->  ( k  -  n
)  e.  ZZ )
125 eleq1 2250 . . . . . . . . . . . 12  |-  ( ( k  -  n )  =  ( 1  / 
2 )  ->  (
( k  -  n
)  e.  ZZ  <->  ( 1  /  2 )  e.  ZZ ) )
126124, 125syl5ibcom 155 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( k  -  n )  =  ( 1  /  2 )  ->  ( 1  / 
2 )  e.  ZZ ) )
127126ancoms 268 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( k  -  n )  =  ( 1  /  2 )  ->  ( 1  / 
2 )  e.  ZZ ) )
128123, 127sylbird 170 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n
) )  =  1  ->  ( 1  / 
2 )  e.  ZZ ) )
129108, 128sylbird 170 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  ( 2  x.  k )  ->  ( 1  / 
2 )  e.  ZZ ) )
130100, 129sylbid 150 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  ( k  x.  2 )  ->  ( 1  / 
2 )  e.  ZZ ) )
13195, 130syl5 32 . . . . . 6  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  ->  (
1  /  2 )  e.  ZZ ) )
132131rexlimivv 2610 . . . . 5  |-  ( E. n  e.  ZZ  E. k  e.  ZZ  (
( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  ->  ( 1  / 
2 )  e.  ZZ )
13394, 132sylbir 135 . . . 4  |-  ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N )  -> 
( 1  /  2
)  e.  ZZ )
13493, 133mto 663 . . 3  |-  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N )
135 df-xor 1386 . . . . 5  |-  ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/_  E. k  e.  ZZ  (
k  x.  2 )  =  N )  <->  ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N )  /\  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  ( k  x.  2 )  =  N ) ) )
136 xorbin 1394 . . . . 5  |-  ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/_  E. k  e.  ZZ  (
k  x.  2 )  =  N )  -> 
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  <->  -.  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
137135, 136sylbir 135 . . . 4  |-  ( ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N )  /\  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  <->  -.  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
138137bicomd 141 . . 3  |-  ( ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N )  /\  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )  ->  ( -.  E. k  e.  ZZ  (
k  x.  2 )  =  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
13992, 134, 138sylancl 413 . 2  |-  ( N  e.  ZZ  ->  ( -.  E. k  e.  ZZ  ( k  x.  2 )  =  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
1404, 139bitrd 188 1  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 979    = wceq 1363    \/_ wxo 1385    e. wcel 2158   E.wrex 2466   class class class wbr 4015  (class class class)co 5888   CCcc 7823   RRcr 7824   0cc0 7825   1c1 7826    + caddc 7828    x. cmul 7830    - cmin 8142   -ucneg 8143   # cap 8552    / cdiv 8643   2c2 8984   NN0cn0 9190   ZZcz 9267    || cdvds 11808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-xor 1386  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-id 4305  df-po 4308  df-iso 4309  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-n0 9191  df-z 9268  df-dvds 11809
This theorem is referenced by:  oddm1even  11894  oexpneg  11896  oddnn02np1  11899  2tp1odd  11903  sqoddm1div8z  11905  ltoddhalfle  11912  halfleoddlt  11913  opoe  11914  omoe  11915  opeo  11916  omeo  11917  m1expo  11919  m1exp1  11920  flodddiv4  11953
  Copyright terms: Public domain W3C validator