ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odd2np1 Unicode version

Theorem odd2np1 11843
Description: An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
Distinct variable group:    n, N

Proof of Theorem odd2np1
Dummy variables  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 9252 . . . 4  |-  2  e.  ZZ
2 divides 11762 . . . 4  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  ||  N  <->  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
31, 2mpan 424 . . 3  |-  ( N  e.  ZZ  ->  (
2  ||  N  <->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
43notbid 667 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  -.  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
5 elznn0 9239 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
6 odd2np1lem 11842 . . . . . 6  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
76adantl 277 . . . . 5  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  -> 
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
8 odd2np1lem 11842 . . . . . . 7  |-  ( -u N  e.  NN0  ->  ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  -u N  \/  E. y  e.  ZZ  ( y  x.  2 )  =  -u N
) )
9 peano2z 9260 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  (
x  +  1 )  e.  ZZ )
10 znegcl 9255 . . . . . . . . . . . . 13  |-  ( ( x  +  1 )  e.  ZZ  ->  -u (
x  +  1 )  e.  ZZ )
119, 10syl 14 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  -u (
x  +  1 )  e.  ZZ )
1211ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  x  e.  ZZ )  /\  ( ( 2  x.  x )  +  1 )  =  -u N )  ->  -u (
x  +  1 )  e.  ZZ )
13 zcn 9229 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  x  e.  CC )
14 2cn 8961 . . . . . . . . . . . . . . . . . 18  |-  2  e.  CC
15 mulcl 7913 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  x
)  e.  CC )
1614, 15mpan 424 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
2  x.  x )  e.  CC )
17 peano2cn 8066 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  x.  x )  e.  CC  ->  (
( 2  x.  x
)  +  1 )  e.  CC )
1816, 17syl 14 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
( 2  x.  x
)  +  1 )  e.  CC )
1913, 18syl 14 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  +  1 )  e.  CC )
2019adantl 277 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( 2  x.  x )  +  1 )  e.  CC )
21 simpl 109 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  N  e.  RR )
2221recnd 7960 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  N  e.  CC )
23 negcon2 8184 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2  x.  x )  +  1 )  e.  CC  /\  N  e.  CC )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N 
<->  N  =  -u (
( 2  x.  x
)  +  1 ) ) )
2420, 22, 23syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N 
<->  N  =  -u (
( 2  x.  x
)  +  1 ) ) )
25 eqcom 2177 . . . . . . . . . . . . . 14  |-  ( N  =  -u ( ( 2  x.  x )  +  1 )  <->  -u ( ( 2  x.  x )  +  1 )  =  N )
2614, 13, 15sylancr 414 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ZZ  ->  (
2  x.  x )  e.  CC )
27 ax-1cn 7879 . . . . . . . . . . . . . . . . . . . . . . 23  |-  1  e.  CC
2814, 27mulcli 7937 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  x.  1 )  e.  CC
29 addsubass 8141 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 2  x.  x
)  e.  CC  /\  ( 2  x.  1 )  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  x )  +  ( 2  x.  1 ) )  -  1 )  =  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  - 
1 ) ) )
3028, 27, 29mp3an23 1329 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  x )  e.  CC  ->  (
( ( 2  x.  x )  +  ( 2  x.  1 ) )  -  1 )  =  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  -  1 ) ) )
3126, 30syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  ( 2  x.  1 ) )  -  1 )  =  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  -  1 ) ) )
32 2t1e2 9043 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2  x.  1 )  =  2
3332oveq1i 5875 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  x.  1 )  -  1 )  =  ( 2  -  1 )
34 2m1e1 9008 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  -  1 )  =  1
3533, 34eqtri 2196 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  1 )  -  1 )  =  1
3635oveq2i 5876 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  - 
1 ) )  =  ( ( 2  x.  x )  +  1 )
3731, 36eqtr2di 2225 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  +  1 )  =  ( ( ( 2  x.  x )  +  ( 2  x.  1 ) )  - 
1 ) )
38 adddi 7918 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  e.  CC  /\  x  e.  CC  /\  1  e.  CC )  ->  (
2  x.  ( x  +  1 ) )  =  ( ( 2  x.  x )  +  ( 2  x.  1 ) ) )
3914, 27, 38mp3an13 1328 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  CC  ->  (
2  x.  ( x  +  1 ) )  =  ( ( 2  x.  x )  +  ( 2  x.  1 ) ) )
4013, 39syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
2  x.  ( x  +  1 ) )  =  ( ( 2  x.  x )  +  ( 2  x.  1 ) ) )
4140oveq1d 5880 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
( 2  x.  (
x  +  1 ) )  -  1 )  =  ( ( ( 2  x.  x )  +  ( 2  x.  1 ) )  - 
1 ) )
4237, 41eqtr4d 2211 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  +  1 )  =  ( ( 2  x.  ( x  + 
1 ) )  - 
1 ) )
4342negeqd 8126 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  -u (
( 2  x.  x
)  +  1 )  =  -u ( ( 2  x.  ( x  + 
1 ) )  - 
1 ) )
449zcnd 9347 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
x  +  1 )  e.  CC )
45 mulneg2 8327 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  CC  /\  ( x  +  1
)  e.  CC )  ->  ( 2  x.  -u ( x  +  1 ) )  =  -u ( 2  x.  (
x  +  1 ) ) )
4614, 44, 45sylancr 414 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
2  x.  -u (
x  +  1 ) )  =  -u (
2  x.  ( x  +  1 ) ) )
4746oveq1d 5880 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  (
( 2  x.  -u (
x  +  1 ) )  +  1 )  =  ( -u (
2  x.  ( x  +  1 ) )  +  1 ) )
48 mulcl 7913 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  CC  /\  ( x  +  1
)  e.  CC )  ->  ( 2  x.  ( x  +  1 ) )  e.  CC )
4914, 44, 48sylancr 414 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
2  x.  ( x  +  1 ) )  e.  CC )
50 negsubdi 8187 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 2  x.  (
x  +  1 ) )  e.  CC  /\  1  e.  CC )  -> 
-u ( ( 2  x.  ( x  + 
1 ) )  - 
1 )  =  (
-u ( 2  x.  ( x  +  1 ) )  +  1 ) )
5149, 27, 50sylancl 413 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  -u (
( 2  x.  (
x  +  1 ) )  -  1 )  =  ( -u (
2  x.  ( x  +  1 ) )  +  1 ) )
5247, 51eqtr4d 2211 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
( 2  x.  -u (
x  +  1 ) )  +  1 )  =  -u ( ( 2  x.  ( x  + 
1 ) )  - 
1 ) )
5343, 52eqtr4d 2211 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  -u (
( 2  x.  x
)  +  1 )  =  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 ) )
5453adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  -> 
-u ( ( 2  x.  x )  +  1 )  =  ( ( 2  x.  -u (
x  +  1 ) )  +  1 ) )
5554eqeq1d 2184 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( -u ( ( 2  x.  x )  +  1 )  =  N  <->  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 )  =  N ) )
5625, 55bitrid 192 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( N  =  -u ( ( 2  x.  x )  +  1 )  <->  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 )  =  N ) )
5724, 56bitrd 188 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N 
<->  ( ( 2  x.  -u ( x  +  1 ) )  +  1 )  =  N ) )
5857biimpa 296 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  x  e.  ZZ )  /\  ( ( 2  x.  x )  +  1 )  =  -u N )  ->  (
( 2  x.  -u (
x  +  1 ) )  +  1 )  =  N )
59 oveq2 5873 . . . . . . . . . . . . . 14  |-  ( n  =  -u ( x  + 
1 )  ->  (
2  x.  n )  =  ( 2  x.  -u ( x  +  1 ) ) )
6059oveq1d 5880 . . . . . . . . . . . . 13  |-  ( n  =  -u ( x  + 
1 )  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 ) )
6160eqeq1d 2184 . . . . . . . . . . . 12  |-  ( n  =  -u ( x  + 
1 )  ->  (
( ( 2  x.  n )  +  1 )  =  N  <->  ( (
2  x.  -u (
x  +  1 ) )  +  1 )  =  N ) )
6261rspcev 2839 . . . . . . . . . . 11  |-  ( (
-u ( x  + 
1 )  e.  ZZ  /\  ( ( 2  x.  -u ( x  +  1 ) )  +  1 )  =  N )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N )
6312, 58, 62syl2anc 411 . . . . . . . . . 10  |-  ( ( ( N  e.  RR  /\  x  e.  ZZ )  /\  ( ( 2  x.  x )  +  1 )  =  -u N )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N )
6463ex 115 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
6564rexlimdva 2592 . . . . . . . 8  |-  ( N  e.  RR  ->  ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  -u N  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
66 znegcl 9255 . . . . . . . . . . . 12  |-  ( y  e.  ZZ  ->  -u y  e.  ZZ )
6766ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  y  e.  ZZ )  /\  ( y  x.  2 )  =  -u N )  ->  -u y  e.  ZZ )
68 zcn 9229 . . . . . . . . . . . . . . 15  |-  ( y  e.  ZZ  ->  y  e.  CC )
69 mulcl 7913 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  CC  /\  2  e.  CC )  ->  ( y  x.  2 )  e.  CC )
7068, 14, 69sylancl 413 . . . . . . . . . . . . . 14  |-  ( y  e.  ZZ  ->  (
y  x.  2 )  e.  CC )
71 recn 7919 . . . . . . . . . . . . . 14  |-  ( N  e.  RR  ->  N  e.  CC )
72 negcon2 8184 . . . . . . . . . . . . . 14  |-  ( ( ( y  x.  2 )  e.  CC  /\  N  e.  CC )  ->  ( ( y  x.  2 )  =  -u N 
<->  N  =  -u (
y  x.  2 ) ) )
7370, 71, 72syl2anr 290 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  -u N 
<->  N  =  -u (
y  x.  2 ) ) )
74 eqcom 2177 . . . . . . . . . . . . . 14  |-  ( N  =  -u ( y  x.  2 )  <->  -u ( y  x.  2 )  =  N )
75 mulneg1 8326 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  CC  /\  2  e.  CC )  ->  ( -u y  x.  2 )  =  -u ( y  x.  2 ) )
7668, 14, 75sylancl 413 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ZZ  ->  ( -u y  x.  2 )  =  -u ( y  x.  2 ) )
7776adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( -u y  x.  2 )  =  -u ( y  x.  2 ) )
7877eqeq1d 2184 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( -u y  x.  2 )  =  N  <->  -u ( y  x.  2 )  =  N ) )
7974, 78bitr4id 199 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( N  =  -u ( y  x.  2 )  <->  ( -u y  x.  2 )  =  N ) )
8073, 79bitrd 188 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  -u N 
<->  ( -u y  x.  2 )  =  N ) )
8180biimpa 296 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  y  e.  ZZ )  /\  ( y  x.  2 )  =  -u N )  ->  ( -u y  x.  2 )  =  N )
82 oveq1 5872 . . . . . . . . . . . . 13  |-  ( k  =  -u y  ->  (
k  x.  2 )  =  ( -u y  x.  2 ) )
8382eqeq1d 2184 . . . . . . . . . . . 12  |-  ( k  =  -u y  ->  (
( k  x.  2 )  =  N  <->  ( -u y  x.  2 )  =  N ) )
8483rspcev 2839 . . . . . . . . . . 11  |-  ( (
-u y  e.  ZZ  /\  ( -u y  x.  2 )  =  N )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N )
8567, 81, 84syl2anc 411 . . . . . . . . . 10  |-  ( ( ( N  e.  RR  /\  y  e.  ZZ )  /\  ( y  x.  2 )  =  -u N )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N )
8685ex 115 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  -u N  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
8786rexlimdva 2592 . . . . . . . 8  |-  ( N  e.  RR  ->  ( E. y  e.  ZZ  ( y  x.  2 )  =  -u N  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
8865, 87orim12d 786 . . . . . . 7  |-  ( N  e.  RR  ->  (
( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  -u N  \/  E. y  e.  ZZ  ( y  x.  2 )  =  -u N )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) ) )
898, 88syl5 32 . . . . . 6  |-  ( N  e.  RR  ->  ( -u N  e.  NN0  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) ) )
9089imp 124 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
917, 90jaodan 797 . . . 4  |-  ( ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
925, 91sylbi 121 . . 3  |-  ( N  e.  ZZ  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
93 halfnz 9320 . . . 4  |-  -.  (
1  /  2 )  e.  ZZ
94 reeanv 2644 . . . . 5  |-  ( E. n  e.  ZZ  E. k  e.  ZZ  (
( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  <-> 
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
95 eqtr3 2195 . . . . . . 7  |-  ( ( ( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  ->  ( ( 2  x.  n )  +  1 )  =  ( k  x.  2 ) )
96 zcn 9229 . . . . . . . . . . 11  |-  ( k  e.  ZZ  ->  k  e.  CC )
97 mulcom 7915 . . . . . . . . . . 11  |-  ( ( k  e.  CC  /\  2  e.  CC )  ->  ( k  x.  2 )  =  ( 2  x.  k ) )
9896, 14, 97sylancl 413 . . . . . . . . . 10  |-  ( k  e.  ZZ  ->  (
k  x.  2 )  =  ( 2  x.  k ) )
9998eqeq2d 2187 . . . . . . . . 9  |-  ( k  e.  ZZ  ->  (
( ( 2  x.  n )  +  1 )  =  ( k  x.  2 )  <->  ( (
2  x.  n )  +  1 )  =  ( 2  x.  k
) ) )
10099adantl 277 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  ( k  x.  2 )  <-> 
( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
101 mulcl 7913 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  k  e.  CC )  ->  ( 2  x.  k
)  e.  CC )
10214, 96, 101sylancr 414 . . . . . . . . . 10  |-  ( k  e.  ZZ  ->  (
2  x.  k )  e.  CC )
103 zcn 9229 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  n  e.  CC )
104 mulcl 7913 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  n  e.  CC )  ->  ( 2  x.  n
)  e.  CC )
10514, 103, 104sylancr 414 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  (
2  x.  n )  e.  CC )
106 subadd 8134 . . . . . . . . . . 11  |-  ( ( ( 2  x.  k
)  e.  CC  /\  ( 2  x.  n
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n
) )  =  1  <-> 
( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
10727, 106mp3an3 1326 . . . . . . . . . 10  |-  ( ( ( 2  x.  k
)  e.  CC  /\  ( 2  x.  n
)  e.  CC )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n ) )  =  1  <->  ( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
108102, 105, 107syl2anr 290 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n
) )  =  1  <-> 
( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
109 subcl 8130 . . . . . . . . . . . . . 14  |-  ( ( k  e.  CC  /\  n  e.  CC )  ->  ( k  -  n
)  e.  CC )
110 2ap0 8983 . . . . . . . . . . . . . . . 16  |-  2 #  0
11114, 110pm3.2i 272 . . . . . . . . . . . . . . 15  |-  ( 2  e.  CC  /\  2 #  0 )
112 eqcom 2177 . . . . . . . . . . . . . . . 16  |-  ( ( k  -  n )  =  ( 1  / 
2 )  <->  ( 1  /  2 )  =  ( k  -  n
) )
113 divmulap 8604 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  ( k  -  n
)  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 ) )  ->  ( ( 1  /  2 )  =  ( k  -  n
)  <->  ( 2  x.  ( k  -  n
) )  =  1 ) )
114112, 113bitrid 192 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  CC  /\  ( k  -  n
)  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 ) )  ->  ( ( k  -  n )  =  ( 1  /  2
)  <->  ( 2  x.  ( k  -  n
) )  =  1 ) )
11527, 111, 114mp3an13 1328 . . . . . . . . . . . . . 14  |-  ( ( k  -  n )  e.  CC  ->  (
( k  -  n
)  =  ( 1  /  2 )  <->  ( 2  x.  ( k  -  n ) )  =  1 ) )
116109, 115syl 14 . . . . . . . . . . . . 13  |-  ( ( k  e.  CC  /\  n  e.  CC )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( 2  x.  (
k  -  n ) )  =  1 ) )
117116ancoms 268 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( 2  x.  (
k  -  n ) )  =  1 ) )
118 subdi 8316 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  k  e.  CC  /\  n  e.  CC )  ->  (
2  x.  ( k  -  n ) )  =  ( ( 2  x.  k )  -  ( 2  x.  n
) ) )
11914, 118mp3an1 1324 . . . . . . . . . . . . . 14  |-  ( ( k  e.  CC  /\  n  e.  CC )  ->  ( 2  x.  (
k  -  n ) )  =  ( ( 2  x.  k )  -  ( 2  x.  n ) ) )
120119ancoms 268 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( 2  x.  (
k  -  n ) )  =  ( ( 2  x.  k )  -  ( 2  x.  n ) ) )
121120eqeq1d 2184 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( ( 2  x.  ( k  -  n
) )  =  1  <-> 
( ( 2  x.  k )  -  (
2  x.  n ) )  =  1 ) )
122117, 121bitrd 188 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( ( 2  x.  k )  -  (
2  x.  n ) )  =  1 ) )
123103, 96, 122syl2an 289 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( ( 2  x.  k )  -  (
2  x.  n ) )  =  1 ) )
124 zsubcl 9265 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  n  e.  ZZ )  ->  ( k  -  n
)  e.  ZZ )
125 eleq1 2238 . . . . . . . . . . . 12  |-  ( ( k  -  n )  =  ( 1  / 
2 )  ->  (
( k  -  n
)  e.  ZZ  <->  ( 1  /  2 )  e.  ZZ ) )
126124, 125syl5ibcom 155 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( k  -  n )  =  ( 1  /  2 )  ->  ( 1  / 
2 )  e.  ZZ ) )
127126ancoms 268 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( k  -  n )  =  ( 1  /  2 )  ->  ( 1  / 
2 )  e.  ZZ ) )
128123, 127sylbird 170 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n
) )  =  1  ->  ( 1  / 
2 )  e.  ZZ ) )
129108, 128sylbird 170 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  ( 2  x.  k )  ->  ( 1  / 
2 )  e.  ZZ ) )
130100, 129sylbid 150 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  ( k  x.  2 )  ->  ( 1  / 
2 )  e.  ZZ ) )
13195, 130syl5 32 . . . . . 6  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  ->  (
1  /  2 )  e.  ZZ ) )
132131rexlimivv 2598 . . . . 5  |-  ( E. n  e.  ZZ  E. k  e.  ZZ  (
( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  ->  ( 1  / 
2 )  e.  ZZ )
13394, 132sylbir 135 . . . 4  |-  ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N )  -> 
( 1  /  2
)  e.  ZZ )
13493, 133mto 662 . . 3  |-  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N )
135 df-xor 1376 . . . . 5  |-  ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/_  E. k  e.  ZZ  (
k  x.  2 )  =  N )  <->  ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N )  /\  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  ( k  x.  2 )  =  N ) ) )
136 xorbin 1384 . . . . 5  |-  ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/_  E. k  e.  ZZ  (
k  x.  2 )  =  N )  -> 
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  <->  -.  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
137135, 136sylbir 135 . . . 4  |-  ( ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N )  /\  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  <->  -.  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
138137bicomd 141 . . 3  |-  ( ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N )  /\  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )  ->  ( -.  E. k  e.  ZZ  (
k  x.  2 )  =  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
13992, 134, 138sylancl 413 . 2  |-  ( N  e.  ZZ  ->  ( -.  E. k  e.  ZZ  ( k  x.  2 )  =  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
1404, 139bitrd 188 1  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    \/_ wxo 1375    e. wcel 2146   E.wrex 2454   class class class wbr 3998  (class class class)co 5865   CCcc 7784   RRcr 7785   0cc0 7786   1c1 7787    + caddc 7789    x. cmul 7791    - cmin 8102   -ucneg 8103   # cap 8512    / cdiv 8601   2c2 8941   NN0cn0 9147   ZZcz 9224    || cdvds 11760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-id 4287  df-po 4290  df-iso 4291  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-n0 9148  df-z 9225  df-dvds 11761
This theorem is referenced by:  oddm1even  11845  oexpneg  11847  oddnn02np1  11850  2tp1odd  11854  sqoddm1div8z  11856  ltoddhalfle  11863  halfleoddlt  11864  opoe  11865  omoe  11866  opeo  11867  omeo  11868  m1expo  11870  m1exp1  11871  flodddiv4  11904
  Copyright terms: Public domain W3C validator