ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odd2np1 Unicode version

Theorem odd2np1 11810
Description: An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
Distinct variable group:    n, N

Proof of Theorem odd2np1
Dummy variables  k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 9219 . . . 4  |-  2  e.  ZZ
2 divides 11729 . . . 4  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  ||  N  <->  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
31, 2mpan 421 . . 3  |-  ( N  e.  ZZ  ->  (
2  ||  N  <->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
43notbid 657 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  -.  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
5 elznn0 9206 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
6 odd2np1lem 11809 . . . . . 6  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
76adantl 275 . . . . 5  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  -> 
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
8 odd2np1lem 11809 . . . . . . 7  |-  ( -u N  e.  NN0  ->  ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  -u N  \/  E. y  e.  ZZ  ( y  x.  2 )  =  -u N
) )
9 peano2z 9227 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  (
x  +  1 )  e.  ZZ )
10 znegcl 9222 . . . . . . . . . . . . 13  |-  ( ( x  +  1 )  e.  ZZ  ->  -u (
x  +  1 )  e.  ZZ )
119, 10syl 14 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  -u (
x  +  1 )  e.  ZZ )
1211ad2antlr 481 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  x  e.  ZZ )  /\  ( ( 2  x.  x )  +  1 )  =  -u N )  ->  -u (
x  +  1 )  e.  ZZ )
13 zcn 9196 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  x  e.  CC )
14 2cn 8928 . . . . . . . . . . . . . . . . . 18  |-  2  e.  CC
15 mulcl 7880 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  x
)  e.  CC )
1614, 15mpan 421 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
2  x.  x )  e.  CC )
17 peano2cn 8033 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  x.  x )  e.  CC  ->  (
( 2  x.  x
)  +  1 )  e.  CC )
1816, 17syl 14 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
( 2  x.  x
)  +  1 )  e.  CC )
1913, 18syl 14 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  +  1 )  e.  CC )
2019adantl 275 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( 2  x.  x )  +  1 )  e.  CC )
21 simpl 108 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  N  e.  RR )
2221recnd 7927 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  N  e.  CC )
23 negcon2 8151 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2  x.  x )  +  1 )  e.  CC  /\  N  e.  CC )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N 
<->  N  =  -u (
( 2  x.  x
)  +  1 ) ) )
2420, 22, 23syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N 
<->  N  =  -u (
( 2  x.  x
)  +  1 ) ) )
25 eqcom 2167 . . . . . . . . . . . . . 14  |-  ( N  =  -u ( ( 2  x.  x )  +  1 )  <->  -u ( ( 2  x.  x )  +  1 )  =  N )
2614, 13, 15sylancr 411 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ZZ  ->  (
2  x.  x )  e.  CC )
27 ax-1cn 7846 . . . . . . . . . . . . . . . . . . . . . . 23  |-  1  e.  CC
2814, 27mulcli 7904 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  x.  1 )  e.  CC
29 addsubass 8108 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 2  x.  x
)  e.  CC  /\  ( 2  x.  1 )  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  x )  +  ( 2  x.  1 ) )  -  1 )  =  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  - 
1 ) ) )
3028, 27, 29mp3an23 1319 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  x )  e.  CC  ->  (
( ( 2  x.  x )  +  ( 2  x.  1 ) )  -  1 )  =  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  -  1 ) ) )
3126, 30syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  ( 2  x.  1 ) )  -  1 )  =  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  -  1 ) ) )
32 2t1e2 9010 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2  x.  1 )  =  2
3332oveq1i 5852 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  x.  1 )  -  1 )  =  ( 2  -  1 )
34 2m1e1 8975 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  -  1 )  =  1
3533, 34eqtri 2186 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  1 )  -  1 )  =  1
3635oveq2i 5853 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  x.  x )  +  ( ( 2  x.  1 )  - 
1 ) )  =  ( ( 2  x.  x )  +  1 )
3731, 36eqtr2di 2216 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  +  1 )  =  ( ( ( 2  x.  x )  +  ( 2  x.  1 ) )  - 
1 ) )
38 adddi 7885 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  e.  CC  /\  x  e.  CC  /\  1  e.  CC )  ->  (
2  x.  ( x  +  1 ) )  =  ( ( 2  x.  x )  +  ( 2  x.  1 ) ) )
3914, 27, 38mp3an13 1318 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  CC  ->  (
2  x.  ( x  +  1 ) )  =  ( ( 2  x.  x )  +  ( 2  x.  1 ) ) )
4013, 39syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
2  x.  ( x  +  1 ) )  =  ( ( 2  x.  x )  +  ( 2  x.  1 ) ) )
4140oveq1d 5857 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
( 2  x.  (
x  +  1 ) )  -  1 )  =  ( ( ( 2  x.  x )  +  ( 2  x.  1 ) )  - 
1 ) )
4237, 41eqtr4d 2201 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  +  1 )  =  ( ( 2  x.  ( x  + 
1 ) )  - 
1 ) )
4342negeqd 8093 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  -u (
( 2  x.  x
)  +  1 )  =  -u ( ( 2  x.  ( x  + 
1 ) )  - 
1 ) )
449zcnd 9314 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
x  +  1 )  e.  CC )
45 mulneg2 8294 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  CC  /\  ( x  +  1
)  e.  CC )  ->  ( 2  x.  -u ( x  +  1 ) )  =  -u ( 2  x.  (
x  +  1 ) ) )
4614, 44, 45sylancr 411 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
2  x.  -u (
x  +  1 ) )  =  -u (
2  x.  ( x  +  1 ) ) )
4746oveq1d 5857 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  (
( 2  x.  -u (
x  +  1 ) )  +  1 )  =  ( -u (
2  x.  ( x  +  1 ) )  +  1 ) )
48 mulcl 7880 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  CC  /\  ( x  +  1
)  e.  CC )  ->  ( 2  x.  ( x  +  1 ) )  e.  CC )
4914, 44, 48sylancr 411 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
2  x.  ( x  +  1 ) )  e.  CC )
50 negsubdi 8154 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 2  x.  (
x  +  1 ) )  e.  CC  /\  1  e.  CC )  -> 
-u ( ( 2  x.  ( x  + 
1 ) )  - 
1 )  =  (
-u ( 2  x.  ( x  +  1 ) )  +  1 ) )
5149, 27, 50sylancl 410 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  -u (
( 2  x.  (
x  +  1 ) )  -  1 )  =  ( -u (
2  x.  ( x  +  1 ) )  +  1 ) )
5247, 51eqtr4d 2201 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
( 2  x.  -u (
x  +  1 ) )  +  1 )  =  -u ( ( 2  x.  ( x  + 
1 ) )  - 
1 ) )
5343, 52eqtr4d 2201 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  -u (
( 2  x.  x
)  +  1 )  =  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 ) )
5453adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  -> 
-u ( ( 2  x.  x )  +  1 )  =  ( ( 2  x.  -u (
x  +  1 ) )  +  1 ) )
5554eqeq1d 2174 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( -u ( ( 2  x.  x )  +  1 )  =  N  <->  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 )  =  N ) )
5625, 55syl5bb 191 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( N  =  -u ( ( 2  x.  x )  +  1 )  <->  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 )  =  N ) )
5724, 56bitrd 187 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N 
<->  ( ( 2  x.  -u ( x  +  1 ) )  +  1 )  =  N ) )
5857biimpa 294 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  x  e.  ZZ )  /\  ( ( 2  x.  x )  +  1 )  =  -u N )  ->  (
( 2  x.  -u (
x  +  1 ) )  +  1 )  =  N )
59 oveq2 5850 . . . . . . . . . . . . . 14  |-  ( n  =  -u ( x  + 
1 )  ->  (
2  x.  n )  =  ( 2  x.  -u ( x  +  1 ) ) )
6059oveq1d 5857 . . . . . . . . . . . . 13  |-  ( n  =  -u ( x  + 
1 )  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  -u ( x  + 
1 ) )  +  1 ) )
6160eqeq1d 2174 . . . . . . . . . . . 12  |-  ( n  =  -u ( x  + 
1 )  ->  (
( ( 2  x.  n )  +  1 )  =  N  <->  ( (
2  x.  -u (
x  +  1 ) )  +  1 )  =  N ) )
6261rspcev 2830 . . . . . . . . . . 11  |-  ( (
-u ( x  + 
1 )  e.  ZZ  /\  ( ( 2  x.  -u ( x  +  1 ) )  +  1 )  =  N )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N )
6312, 58, 62syl2anc 409 . . . . . . . . . 10  |-  ( ( ( N  e.  RR  /\  x  e.  ZZ )  /\  ( ( 2  x.  x )  +  1 )  =  -u N )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N )
6463ex 114 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  -u N  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
6564rexlimdva 2583 . . . . . . . 8  |-  ( N  e.  RR  ->  ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  -u N  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
66 znegcl 9222 . . . . . . . . . . . 12  |-  ( y  e.  ZZ  ->  -u y  e.  ZZ )
6766ad2antlr 481 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  y  e.  ZZ )  /\  ( y  x.  2 )  =  -u N )  ->  -u y  e.  ZZ )
68 zcn 9196 . . . . . . . . . . . . . . 15  |-  ( y  e.  ZZ  ->  y  e.  CC )
69 mulcl 7880 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  CC  /\  2  e.  CC )  ->  ( y  x.  2 )  e.  CC )
7068, 14, 69sylancl 410 . . . . . . . . . . . . . 14  |-  ( y  e.  ZZ  ->  (
y  x.  2 )  e.  CC )
71 recn 7886 . . . . . . . . . . . . . 14  |-  ( N  e.  RR  ->  N  e.  CC )
72 negcon2 8151 . . . . . . . . . . . . . 14  |-  ( ( ( y  x.  2 )  e.  CC  /\  N  e.  CC )  ->  ( ( y  x.  2 )  =  -u N 
<->  N  =  -u (
y  x.  2 ) ) )
7370, 71, 72syl2anr 288 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  -u N 
<->  N  =  -u (
y  x.  2 ) ) )
74 eqcom 2167 . . . . . . . . . . . . . 14  |-  ( N  =  -u ( y  x.  2 )  <->  -u ( y  x.  2 )  =  N )
75 mulneg1 8293 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  CC  /\  2  e.  CC )  ->  ( -u y  x.  2 )  =  -u ( y  x.  2 ) )
7668, 14, 75sylancl 410 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ZZ  ->  ( -u y  x.  2 )  =  -u ( y  x.  2 ) )
7776adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( -u y  x.  2 )  =  -u ( y  x.  2 ) )
7877eqeq1d 2174 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( -u y  x.  2 )  =  N  <->  -u ( y  x.  2 )  =  N ) )
7974, 78bitr4id 198 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( N  =  -u ( y  x.  2 )  <->  ( -u y  x.  2 )  =  N ) )
8073, 79bitrd 187 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  -u N 
<->  ( -u y  x.  2 )  =  N ) )
8180biimpa 294 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  y  e.  ZZ )  /\  ( y  x.  2 )  =  -u N )  ->  ( -u y  x.  2 )  =  N )
82 oveq1 5849 . . . . . . . . . . . . 13  |-  ( k  =  -u y  ->  (
k  x.  2 )  =  ( -u y  x.  2 ) )
8382eqeq1d 2174 . . . . . . . . . . . 12  |-  ( k  =  -u y  ->  (
( k  x.  2 )  =  N  <->  ( -u y  x.  2 )  =  N ) )
8483rspcev 2830 . . . . . . . . . . 11  |-  ( (
-u y  e.  ZZ  /\  ( -u y  x.  2 )  =  N )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N )
8567, 81, 84syl2anc 409 . . . . . . . . . 10  |-  ( ( ( N  e.  RR  /\  y  e.  ZZ )  /\  ( y  x.  2 )  =  -u N )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N )
8685ex 114 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  -u N  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
8786rexlimdva 2583 . . . . . . . 8  |-  ( N  e.  RR  ->  ( E. y  e.  ZZ  ( y  x.  2 )  =  -u N  ->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
8865, 87orim12d 776 . . . . . . 7  |-  ( N  e.  RR  ->  (
( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  -u N  \/  E. y  e.  ZZ  ( y  x.  2 )  =  -u N )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) ) )
898, 88syl5 32 . . . . . 6  |-  ( N  e.  RR  ->  ( -u N  e.  NN0  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) ) )
9089imp 123 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
917, 90jaodan 787 . . . 4  |-  ( ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
925, 91sylbi 120 . . 3  |-  ( N  e.  ZZ  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
93 halfnz 9287 . . . 4  |-  -.  (
1  /  2 )  e.  ZZ
94 reeanv 2635 . . . . 5  |-  ( E. n  e.  ZZ  E. k  e.  ZZ  (
( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  <-> 
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
95 eqtr3 2185 . . . . . . 7  |-  ( ( ( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  ->  ( ( 2  x.  n )  +  1 )  =  ( k  x.  2 ) )
96 zcn 9196 . . . . . . . . . . 11  |-  ( k  e.  ZZ  ->  k  e.  CC )
97 mulcom 7882 . . . . . . . . . . 11  |-  ( ( k  e.  CC  /\  2  e.  CC )  ->  ( k  x.  2 )  =  ( 2  x.  k ) )
9896, 14, 97sylancl 410 . . . . . . . . . 10  |-  ( k  e.  ZZ  ->  (
k  x.  2 )  =  ( 2  x.  k ) )
9998eqeq2d 2177 . . . . . . . . 9  |-  ( k  e.  ZZ  ->  (
( ( 2  x.  n )  +  1 )  =  ( k  x.  2 )  <->  ( (
2  x.  n )  +  1 )  =  ( 2  x.  k
) ) )
10099adantl 275 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  ( k  x.  2 )  <-> 
( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
101 mulcl 7880 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  k  e.  CC )  ->  ( 2  x.  k
)  e.  CC )
10214, 96, 101sylancr 411 . . . . . . . . . 10  |-  ( k  e.  ZZ  ->  (
2  x.  k )  e.  CC )
103 zcn 9196 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  n  e.  CC )
104 mulcl 7880 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  n  e.  CC )  ->  ( 2  x.  n
)  e.  CC )
10514, 103, 104sylancr 411 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  (
2  x.  n )  e.  CC )
106 subadd 8101 . . . . . . . . . . 11  |-  ( ( ( 2  x.  k
)  e.  CC  /\  ( 2  x.  n
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n
) )  =  1  <-> 
( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
10727, 106mp3an3 1316 . . . . . . . . . 10  |-  ( ( ( 2  x.  k
)  e.  CC  /\  ( 2  x.  n
)  e.  CC )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n ) )  =  1  <->  ( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
108102, 105, 107syl2anr 288 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n
) )  =  1  <-> 
( ( 2  x.  n )  +  1 )  =  ( 2  x.  k ) ) )
109 subcl 8097 . . . . . . . . . . . . . 14  |-  ( ( k  e.  CC  /\  n  e.  CC )  ->  ( k  -  n
)  e.  CC )
110 2ap0 8950 . . . . . . . . . . . . . . . 16  |-  2 #  0
11114, 110pm3.2i 270 . . . . . . . . . . . . . . 15  |-  ( 2  e.  CC  /\  2 #  0 )
112 eqcom 2167 . . . . . . . . . . . . . . . 16  |-  ( ( k  -  n )  =  ( 1  / 
2 )  <->  ( 1  /  2 )  =  ( k  -  n
) )
113 divmulap 8571 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  ( k  -  n
)  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 ) )  ->  ( ( 1  /  2 )  =  ( k  -  n
)  <->  ( 2  x.  ( k  -  n
) )  =  1 ) )
114112, 113syl5bb 191 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  CC  /\  ( k  -  n
)  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 ) )  ->  ( ( k  -  n )  =  ( 1  /  2
)  <->  ( 2  x.  ( k  -  n
) )  =  1 ) )
11527, 111, 114mp3an13 1318 . . . . . . . . . . . . . 14  |-  ( ( k  -  n )  e.  CC  ->  (
( k  -  n
)  =  ( 1  /  2 )  <->  ( 2  x.  ( k  -  n ) )  =  1 ) )
116109, 115syl 14 . . . . . . . . . . . . 13  |-  ( ( k  e.  CC  /\  n  e.  CC )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( 2  x.  (
k  -  n ) )  =  1 ) )
117116ancoms 266 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( 2  x.  (
k  -  n ) )  =  1 ) )
118 subdi 8283 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  k  e.  CC  /\  n  e.  CC )  ->  (
2  x.  ( k  -  n ) )  =  ( ( 2  x.  k )  -  ( 2  x.  n
) ) )
11914, 118mp3an1 1314 . . . . . . . . . . . . . 14  |-  ( ( k  e.  CC  /\  n  e.  CC )  ->  ( 2  x.  (
k  -  n ) )  =  ( ( 2  x.  k )  -  ( 2  x.  n ) ) )
120119ancoms 266 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( 2  x.  (
k  -  n ) )  =  ( ( 2  x.  k )  -  ( 2  x.  n ) ) )
121120eqeq1d 2174 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( ( 2  x.  ( k  -  n
) )  =  1  <-> 
( ( 2  x.  k )  -  (
2  x.  n ) )  =  1 ) )
122117, 121bitrd 187 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( ( 2  x.  k )  -  (
2  x.  n ) )  =  1 ) )
123103, 96, 122syl2an 287 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( k  -  n )  =  ( 1  /  2 )  <-> 
( ( 2  x.  k )  -  (
2  x.  n ) )  =  1 ) )
124 zsubcl 9232 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  n  e.  ZZ )  ->  ( k  -  n
)  e.  ZZ )
125 eleq1 2229 . . . . . . . . . . . 12  |-  ( ( k  -  n )  =  ( 1  / 
2 )  ->  (
( k  -  n
)  e.  ZZ  <->  ( 1  /  2 )  e.  ZZ ) )
126124, 125syl5ibcom 154 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( k  -  n )  =  ( 1  /  2 )  ->  ( 1  / 
2 )  e.  ZZ ) )
127126ancoms 266 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( k  -  n )  =  ( 1  /  2 )  ->  ( 1  / 
2 )  e.  ZZ ) )
128123, 127sylbird 169 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  k )  -  ( 2  x.  n
) )  =  1  ->  ( 1  / 
2 )  e.  ZZ ) )
129108, 128sylbird 169 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  ( 2  x.  k )  ->  ( 1  / 
2 )  e.  ZZ ) )
130100, 129sylbid 149 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  ( k  x.  2 )  ->  ( 1  / 
2 )  e.  ZZ ) )
13195, 130syl5 32 . . . . . 6  |-  ( ( n  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  ->  (
1  /  2 )  e.  ZZ ) )
132131rexlimivv 2589 . . . . 5  |-  ( E. n  e.  ZZ  E. k  e.  ZZ  (
( ( 2  x.  n )  +  1 )  =  N  /\  ( k  x.  2 )  =  N )  ->  ( 1  / 
2 )  e.  ZZ )
13394, 132sylbir 134 . . . 4  |-  ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N )  -> 
( 1  /  2
)  e.  ZZ )
13493, 133mto 652 . . 3  |-  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N )
135 df-xor 1366 . . . . 5  |-  ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/_  E. k  e.  ZZ  (
k  x.  2 )  =  N )  <->  ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N )  /\  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  ( k  x.  2 )  =  N ) ) )
136 xorbin 1374 . . . . 5  |-  ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/_  E. k  e.  ZZ  (
k  x.  2 )  =  N )  -> 
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  <->  -.  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
137135, 136sylbir 134 . . . 4  |-  ( ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N )  /\  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  <->  -.  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
138137bicomd 140 . . 3  |-  ( ( ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N )  /\  -.  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  /\  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )  ->  ( -.  E. k  e.  ZZ  (
k  x.  2 )  =  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
13992, 134, 138sylancl 410 . 2  |-  ( N  e.  ZZ  ->  ( -.  E. k  e.  ZZ  ( k  x.  2 )  =  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
1404, 139bitrd 187 1  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 968    = wceq 1343    \/_ wxo 1365    e. wcel 2136   E.wrex 2445   class class class wbr 3982  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    - cmin 8069   -ucneg 8070   # cap 8479    / cdiv 8568   2c2 8908   NN0cn0 9114   ZZcz 9191    || cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-dvds 11728
This theorem is referenced by:  oddm1even  11812  oexpneg  11814  oddnn02np1  11817  2tp1odd  11821  sqoddm1div8z  11823  ltoddhalfle  11830  halfleoddlt  11831  opoe  11832  omoe  11833  opeo  11834  omeo  11835  m1expo  11837  m1exp1  11838  flodddiv4  11871
  Copyright terms: Public domain W3C validator