ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp1d2m1eqxm1d2 Unicode version

Theorem xp1d2m1eqxm1d2 9109
Description: A complex number increased by 1, then divided by 2, then decreased by 1 equals the complex number decreased by 1 and then divided by 2. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
xp1d2m1eqxm1d2  |-  ( X  e.  CC  ->  (
( ( X  + 
1 )  /  2
)  -  1 )  =  ( ( X  -  1 )  / 
2 ) )

Proof of Theorem xp1d2m1eqxm1d2
StepHypRef Expression
1 peano2cn 8033 . . . 4  |-  ( X  e.  CC  ->  ( X  +  1 )  e.  CC )
21halfcld 9101 . . 3  |-  ( X  e.  CC  ->  (
( X  +  1 )  /  2 )  e.  CC )
3 peano2cnm 8164 . . 3  |-  ( ( ( X  +  1 )  /  2 )  e.  CC  ->  (
( ( X  + 
1 )  /  2
)  -  1 )  e.  CC )
42, 3syl 14 . 2  |-  ( X  e.  CC  ->  (
( ( X  + 
1 )  /  2
)  -  1 )  e.  CC )
5 peano2cnm 8164 . . 3  |-  ( X  e.  CC  ->  ( X  -  1 )  e.  CC )
65halfcld 9101 . 2  |-  ( X  e.  CC  ->  (
( X  -  1 )  /  2 )  e.  CC )
7 2cnd 8930 . 2  |-  ( X  e.  CC  ->  2  e.  CC )
8 2ap0 8950 . . 3  |-  2 #  0
98a1i 9 . 2  |-  ( X  e.  CC  ->  2 #  0 )
10 1cnd 7915 . . . 4  |-  ( X  e.  CC  ->  1  e.  CC )
112, 10, 7subdird 8313 . . 3  |-  ( X  e.  CC  ->  (
( ( ( X  +  1 )  / 
2 )  -  1 )  x.  2 )  =  ( ( ( ( X  +  1 )  /  2 )  x.  2 )  -  ( 1  x.  2 ) ) )
121, 7, 9divcanap1d 8687 . . . 4  |-  ( X  e.  CC  ->  (
( ( X  + 
1 )  /  2
)  x.  2 )  =  ( X  + 
1 ) )
137mulid2d 7917 . . . 4  |-  ( X  e.  CC  ->  (
1  x.  2 )  =  2 )
1412, 13oveq12d 5860 . . 3  |-  ( X  e.  CC  ->  (
( ( ( X  +  1 )  / 
2 )  x.  2 )  -  ( 1  x.  2 ) )  =  ( ( X  +  1 )  - 
2 ) )
155, 7, 9divcanap1d 8687 . . . 4  |-  ( X  e.  CC  ->  (
( ( X  - 
1 )  /  2
)  x.  2 )  =  ( X  - 
1 ) )
16 2m1e1 8975 . . . . . 6  |-  ( 2  -  1 )  =  1
1716a1i 9 . . . . 5  |-  ( X  e.  CC  ->  (
2  -  1 )  =  1 )
1817oveq2d 5858 . . . 4  |-  ( X  e.  CC  ->  ( X  -  ( 2  -  1 ) )  =  ( X  - 
1 ) )
19 id 19 . . . . 5  |-  ( X  e.  CC  ->  X  e.  CC )
2019, 7, 10subsub3d 8239 . . . 4  |-  ( X  e.  CC  ->  ( X  -  ( 2  -  1 ) )  =  ( ( X  +  1 )  - 
2 ) )
2115, 18, 203eqtr2rd 2205 . . 3  |-  ( X  e.  CC  ->  (
( X  +  1 )  -  2 )  =  ( ( ( X  -  1 )  /  2 )  x.  2 ) )
2211, 14, 213eqtrd 2202 . 2  |-  ( X  e.  CC  ->  (
( ( ( X  +  1 )  / 
2 )  -  1 )  x.  2 )  =  ( ( ( X  -  1 )  /  2 )  x.  2 ) )
234, 6, 7, 9, 22mulcanap2ad 8561 1  |-  ( X  e.  CC  ->  (
( ( X  + 
1 )  /  2
)  -  1 )  =  ( ( X  -  1 )  / 
2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    - cmin 8069   # cap 8479    / cdiv 8568   2c2 8908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-2 8916
This theorem is referenced by:  zob  11828  nno  11843  nn0ob  11845
  Copyright terms: Public domain W3C validator