ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp1d2m1eqxm1d2 Unicode version

Theorem xp1d2m1eqxm1d2 9289
Description: A complex number increased by 1, then divided by 2, then decreased by 1 equals the complex number decreased by 1 and then divided by 2. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
xp1d2m1eqxm1d2  |-  ( X  e.  CC  ->  (
( ( X  + 
1 )  /  2
)  -  1 )  =  ( ( X  -  1 )  / 
2 ) )

Proof of Theorem xp1d2m1eqxm1d2
StepHypRef Expression
1 peano2cn 8206 . . . 4  |-  ( X  e.  CC  ->  ( X  +  1 )  e.  CC )
21halfcld 9281 . . 3  |-  ( X  e.  CC  ->  (
( X  +  1 )  /  2 )  e.  CC )
3 peano2cnm 8337 . . 3  |-  ( ( ( X  +  1 )  /  2 )  e.  CC  ->  (
( ( X  + 
1 )  /  2
)  -  1 )  e.  CC )
42, 3syl 14 . 2  |-  ( X  e.  CC  ->  (
( ( X  + 
1 )  /  2
)  -  1 )  e.  CC )
5 peano2cnm 8337 . . 3  |-  ( X  e.  CC  ->  ( X  -  1 )  e.  CC )
65halfcld 9281 . 2  |-  ( X  e.  CC  ->  (
( X  -  1 )  /  2 )  e.  CC )
7 2cnd 9108 . 2  |-  ( X  e.  CC  ->  2  e.  CC )
8 2ap0 9128 . . 3  |-  2 #  0
98a1i 9 . 2  |-  ( X  e.  CC  ->  2 #  0 )
10 1cnd 8087 . . . 4  |-  ( X  e.  CC  ->  1  e.  CC )
112, 10, 7subdird 8486 . . 3  |-  ( X  e.  CC  ->  (
( ( ( X  +  1 )  / 
2 )  -  1 )  x.  2 )  =  ( ( ( ( X  +  1 )  /  2 )  x.  2 )  -  ( 1  x.  2 ) ) )
121, 7, 9divcanap1d 8863 . . . 4  |-  ( X  e.  CC  ->  (
( ( X  + 
1 )  /  2
)  x.  2 )  =  ( X  + 
1 ) )
137mulid2d 8090 . . . 4  |-  ( X  e.  CC  ->  (
1  x.  2 )  =  2 )
1412, 13oveq12d 5961 . . 3  |-  ( X  e.  CC  ->  (
( ( ( X  +  1 )  / 
2 )  x.  2 )  -  ( 1  x.  2 ) )  =  ( ( X  +  1 )  - 
2 ) )
155, 7, 9divcanap1d 8863 . . . 4  |-  ( X  e.  CC  ->  (
( ( X  - 
1 )  /  2
)  x.  2 )  =  ( X  - 
1 ) )
16 2m1e1 9153 . . . . . 6  |-  ( 2  -  1 )  =  1
1716a1i 9 . . . . 5  |-  ( X  e.  CC  ->  (
2  -  1 )  =  1 )
1817oveq2d 5959 . . . 4  |-  ( X  e.  CC  ->  ( X  -  ( 2  -  1 ) )  =  ( X  - 
1 ) )
19 id 19 . . . . 5  |-  ( X  e.  CC  ->  X  e.  CC )
2019, 7, 10subsub3d 8412 . . . 4  |-  ( X  e.  CC  ->  ( X  -  ( 2  -  1 ) )  =  ( ( X  +  1 )  - 
2 ) )
2115, 18, 203eqtr2rd 2244 . . 3  |-  ( X  e.  CC  ->  (
( X  +  1 )  -  2 )  =  ( ( ( X  -  1 )  /  2 )  x.  2 ) )
2211, 14, 213eqtrd 2241 . 2  |-  ( X  e.  CC  ->  (
( ( ( X  +  1 )  / 
2 )  -  1 )  x.  2 )  =  ( ( ( X  -  1 )  /  2 )  x.  2 ) )
234, 6, 7, 9, 22mulcanap2ad 8736 1  |-  ( X  e.  CC  ->  (
( ( X  + 
1 )  /  2
)  -  1 )  =  ( ( X  -  1 )  / 
2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   class class class wbr 4043  (class class class)co 5943   CCcc 7922   0cc0 7924   1c1 7925    + caddc 7927    x. cmul 7929    - cmin 8242   # cap 8653    / cdiv 8744   2c2 9086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-2 9094
This theorem is referenced by:  zob  12173  nno  12188  nn0ob  12190
  Copyright terms: Public domain W3C validator