ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp1d2m1eqxm1d2 Unicode version

Theorem xp1d2m1eqxm1d2 9167
Description: A complex number increased by 1, then divided by 2, then decreased by 1 equals the complex number decreased by 1 and then divided by 2. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
xp1d2m1eqxm1d2  |-  ( X  e.  CC  ->  (
( ( X  + 
1 )  /  2
)  -  1 )  =  ( ( X  -  1 )  / 
2 ) )

Proof of Theorem xp1d2m1eqxm1d2
StepHypRef Expression
1 peano2cn 8088 . . . 4  |-  ( X  e.  CC  ->  ( X  +  1 )  e.  CC )
21halfcld 9159 . . 3  |-  ( X  e.  CC  ->  (
( X  +  1 )  /  2 )  e.  CC )
3 peano2cnm 8219 . . 3  |-  ( ( ( X  +  1 )  /  2 )  e.  CC  ->  (
( ( X  + 
1 )  /  2
)  -  1 )  e.  CC )
42, 3syl 14 . 2  |-  ( X  e.  CC  ->  (
( ( X  + 
1 )  /  2
)  -  1 )  e.  CC )
5 peano2cnm 8219 . . 3  |-  ( X  e.  CC  ->  ( X  -  1 )  e.  CC )
65halfcld 9159 . 2  |-  ( X  e.  CC  ->  (
( X  -  1 )  /  2 )  e.  CC )
7 2cnd 8988 . 2  |-  ( X  e.  CC  ->  2  e.  CC )
8 2ap0 9008 . . 3  |-  2 #  0
98a1i 9 . 2  |-  ( X  e.  CC  ->  2 #  0 )
10 1cnd 7970 . . . 4  |-  ( X  e.  CC  ->  1  e.  CC )
112, 10, 7subdird 8368 . . 3  |-  ( X  e.  CC  ->  (
( ( ( X  +  1 )  / 
2 )  -  1 )  x.  2 )  =  ( ( ( ( X  +  1 )  /  2 )  x.  2 )  -  ( 1  x.  2 ) ) )
121, 7, 9divcanap1d 8744 . . . 4  |-  ( X  e.  CC  ->  (
( ( X  + 
1 )  /  2
)  x.  2 )  =  ( X  + 
1 ) )
137mulid2d 7972 . . . 4  |-  ( X  e.  CC  ->  (
1  x.  2 )  =  2 )
1412, 13oveq12d 5890 . . 3  |-  ( X  e.  CC  ->  (
( ( ( X  +  1 )  / 
2 )  x.  2 )  -  ( 1  x.  2 ) )  =  ( ( X  +  1 )  - 
2 ) )
155, 7, 9divcanap1d 8744 . . . 4  |-  ( X  e.  CC  ->  (
( ( X  - 
1 )  /  2
)  x.  2 )  =  ( X  - 
1 ) )
16 2m1e1 9033 . . . . . 6  |-  ( 2  -  1 )  =  1
1716a1i 9 . . . . 5  |-  ( X  e.  CC  ->  (
2  -  1 )  =  1 )
1817oveq2d 5888 . . . 4  |-  ( X  e.  CC  ->  ( X  -  ( 2  -  1 ) )  =  ( X  - 
1 ) )
19 id 19 . . . . 5  |-  ( X  e.  CC  ->  X  e.  CC )
2019, 7, 10subsub3d 8294 . . . 4  |-  ( X  e.  CC  ->  ( X  -  ( 2  -  1 ) )  =  ( ( X  +  1 )  - 
2 ) )
2115, 18, 203eqtr2rd 2217 . . 3  |-  ( X  e.  CC  ->  (
( X  +  1 )  -  2 )  =  ( ( ( X  -  1 )  /  2 )  x.  2 ) )
2211, 14, 213eqtrd 2214 . 2  |-  ( X  e.  CC  ->  (
( ( ( X  +  1 )  / 
2 )  -  1 )  x.  2 )  =  ( ( ( X  -  1 )  /  2 )  x.  2 ) )
234, 6, 7, 9, 22mulcanap2ad 8617 1  |-  ( X  e.  CC  ->  (
( ( X  + 
1 )  /  2
)  -  1 )  =  ( ( X  -  1 )  / 
2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   class class class wbr 4002  (class class class)co 5872   CCcc 7806   0cc0 7808   1c1 7809    + caddc 7811    x. cmul 7813    - cmin 8124   # cap 8534    / cdiv 8625   2c2 8966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-mulrcl 7907  ax-addcom 7908  ax-mulcom 7909  ax-addass 7910  ax-mulass 7911  ax-distr 7912  ax-i2m1 7913  ax-0lt1 7914  ax-1rid 7915  ax-0id 7916  ax-rnegex 7917  ax-precex 7918  ax-cnre 7919  ax-pre-ltirr 7920  ax-pre-ltwlin 7921  ax-pre-lttrn 7922  ax-pre-apti 7923  ax-pre-ltadd 7924  ax-pre-mulgt0 7925  ax-pre-mulext 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4003  df-opab 4064  df-id 4292  df-po 4295  df-iso 4296  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-iota 5177  df-fun 5217  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-sub 8126  df-neg 8127  df-reap 8528  df-ap 8535  df-div 8626  df-2 8974
This theorem is referenced by:  zob  11888  nno  11903  nn0ob  11905
  Copyright terms: Public domain W3C validator