ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facndiv Unicode version

Theorem facndiv 10721
Description: No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
facndiv  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  -.  ( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ )

Proof of Theorem facndiv
StepHypRef Expression
1 nnre 8928 . . . 4  |-  ( N  e.  NN  ->  N  e.  RR )
2 recnz 9348 . . . 4  |-  ( ( N  e.  RR  /\  1  <  N )  ->  -.  ( 1  /  N
)  e.  ZZ )
31, 2sylan 283 . . 3  |-  ( ( N  e.  NN  /\  1  <  N )  ->  -.  ( 1  /  N
)  e.  ZZ )
43ad2ant2lr 510 . 2  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  -.  ( 1  /  N
)  e.  ZZ )
5 facdiv 10720 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN  /\  N  <_  M )  ->  (
( ! `  M
)  /  N )  e.  NN )
653expa 1203 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  N  <_  M
)  ->  ( ( ! `  M )  /  N )  e.  NN )
76nnzd 9376 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  N  <_  M
)  ->  ( ( ! `  M )  /  N )  e.  ZZ )
87adantrl 478 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ! `  M
)  /  N )  e.  ZZ )
9 zsubcl 9296 . . . . 5  |-  ( ( ( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ  /\  ( ( ! `  M )  /  N
)  e.  ZZ )  ->  ( ( ( ( ! `  M
)  +  1 )  /  N )  -  ( ( ! `  M )  /  N
) )  e.  ZZ )
109ex 115 . . . 4  |-  ( ( ( ( ! `  M )  +  1 )  /  N )  e.  ZZ  ->  (
( ( ! `  M )  /  N
)  e.  ZZ  ->  ( ( ( ( ! `
 M )  +  1 )  /  N
)  -  ( ( ! `  M )  /  N ) )  e.  ZZ ) )
118, 10syl5com 29 . . 3  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ  ->  ( ( ( ( ! `
 M )  +  1 )  /  N
)  -  ( ( ! `  M )  /  N ) )  e.  ZZ ) )
12 faccl 10717 . . . . . . . . 9  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  NN )
1312nncnd 8935 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  CC )
14 peano2cn 8094 . . . . . . . 8  |-  ( ( ! `  M )  e.  CC  ->  (
( ! `  M
)  +  1 )  e.  CC )
1513, 14syl 14 . . . . . . 7  |-  ( M  e.  NN0  ->  ( ( ! `  M )  +  1 )  e.  CC )
1615ad2antrr 488 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ! `  M
)  +  1 )  e.  CC )
1713ad2antrr 488 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  ( ! `  M )  e.  CC )
18 nncn 8929 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  CC )
1918ad2antlr 489 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  N  e.  CC )
20 simplr 528 . . . . . . 7  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  N  e.  NN )
2120nnap0d 8967 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  N #  0 )
2216, 17, 19, 21divsubdirapd 8789 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  -  ( ! `  M )
)  /  N )  =  ( ( ( ( ! `  M
)  +  1 )  /  N )  -  ( ( ! `  M )  /  N
) ) )
23 ax-1cn 7906 . . . . . . . 8  |-  1  e.  CC
24 pncan2 8166 . . . . . . . 8  |-  ( ( ( ! `  M
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( ! `
 M )  +  1 )  -  ( ! `  M )
)  =  1 )
2513, 23, 24sylancl 413 . . . . . . 7  |-  ( M  e.  NN0  ->  ( ( ( ! `  M
)  +  1 )  -  ( ! `  M ) )  =  1 )
2625oveq1d 5892 . . . . . 6  |-  ( M  e.  NN0  ->  ( ( ( ( ! `  M )  +  1 )  -  ( ! `
 M ) )  /  N )  =  ( 1  /  N
) )
2726ad2antrr 488 . . . . 5  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  -  ( ! `  M )
)  /  N )  =  ( 1  /  N ) )
2822, 27eqtr3d 2212 . . . 4  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  /  N
)  -  ( ( ! `  M )  /  N ) )  =  ( 1  /  N ) )
2928eleq1d 2246 . . 3  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ( ! `  M )  +  1 )  /  N )  -  (
( ! `  M
)  /  N ) )  e.  ZZ  <->  ( 1  /  N )  e.  ZZ ) )
3011, 29sylibd 149 . 2  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  (
( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ  ->  ( 1  /  N )  e.  ZZ ) )
314, 30mtod 663 1  |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  < 
N  /\  N  <_  M ) )  ->  -.  ( ( ( ! `
 M )  +  1 )  /  N
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   CCcc 7811   RRcr 7812   1c1 7814    + caddc 7816    < clt 7994    <_ cle 7995    - cmin 8130    / cdiv 8631   NNcn 8921   NN0cn0 9178   ZZcz 9255   !cfa 10707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-seqfrec 10448  df-fac 10708
This theorem is referenced by:  infpnlem1  12359
  Copyright terms: Public domain W3C validator