ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p1times Unicode version

Theorem 1p1times 8241
Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
1p1times  |-  ( A  e.  CC  ->  (
( 1  +  1 )  x.  A )  =  ( A  +  A ) )

Proof of Theorem 1p1times
StepHypRef Expression
1 ax-1cn 8053 . . . 4  |-  1  e.  CC
21a1i 9 . . 3  |-  ( A  e.  CC  ->  1  e.  CC )
3 id 19 . . 3  |-  ( A  e.  CC  ->  A  e.  CC )
42, 2, 3adddird 8133 . 2  |-  ( A  e.  CC  ->  (
( 1  +  1 )  x.  A )  =  ( ( 1  x.  A )  +  ( 1  x.  A
) ) )
5 mullid 8105 . . 3  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
65, 5oveq12d 5985 . 2  |-  ( A  e.  CC  ->  (
( 1  x.  A
)  +  ( 1  x.  A ) )  =  ( A  +  A ) )
74, 6eqtrd 2240 1  |-  ( A  e.  CC  ->  (
( 1  +  1 )  x.  A )  =  ( A  +  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178  (class class class)co 5967   CCcc 7958   1c1 7961    + caddc 7963    x. cmul 7965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-mulcl 8058  ax-mulcom 8061  ax-mulass 8063  ax-distr 8064  ax-1rid 8067  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970
This theorem is referenced by:  eqneg  8840  2times  9199
  Copyright terms: Public domain W3C validator