ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p1times Unicode version

Theorem 1p1times 8280
Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
1p1times  |-  ( A  e.  CC  ->  (
( 1  +  1 )  x.  A )  =  ( A  +  A ) )

Proof of Theorem 1p1times
StepHypRef Expression
1 ax-1cn 8092 . . . 4  |-  1  e.  CC
21a1i 9 . . 3  |-  ( A  e.  CC  ->  1  e.  CC )
3 id 19 . . 3  |-  ( A  e.  CC  ->  A  e.  CC )
42, 2, 3adddird 8172 . 2  |-  ( A  e.  CC  ->  (
( 1  +  1 )  x.  A )  =  ( ( 1  x.  A )  +  ( 1  x.  A
) ) )
5 mullid 8144 . . 3  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
65, 5oveq12d 6019 . 2  |-  ( A  e.  CC  ->  (
( 1  x.  A
)  +  ( 1  x.  A ) )  =  ( A  +  A ) )
74, 6eqtrd 2262 1  |-  ( A  e.  CC  ->  (
( 1  +  1 )  x.  A )  =  ( A  +  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200  (class class class)co 6001   CCcc 7997   1c1 8000    + caddc 8002    x. cmul 8004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8091  ax-1cn 8092  ax-icn 8094  ax-addcl 8095  ax-mulcl 8097  ax-mulcom 8100  ax-mulass 8102  ax-distr 8103  ax-1rid 8106  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004
This theorem is referenced by:  eqneg  8879  2times  9238
  Copyright terms: Public domain W3C validator