ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p1times Unicode version

Theorem 1p1times 7910
Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
1p1times  |-  ( A  e.  CC  ->  (
( 1  +  1 )  x.  A )  =  ( A  +  A ) )

Proof of Theorem 1p1times
StepHypRef Expression
1 ax-1cn 7727 . . . 4  |-  1  e.  CC
21a1i 9 . . 3  |-  ( A  e.  CC  ->  1  e.  CC )
3 id 19 . . 3  |-  ( A  e.  CC  ->  A  e.  CC )
42, 2, 3adddird 7805 . 2  |-  ( A  e.  CC  ->  (
( 1  +  1 )  x.  A )  =  ( ( 1  x.  A )  +  ( 1  x.  A
) ) )
5 mulid2 7778 . . 3  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
65, 5oveq12d 5792 . 2  |-  ( A  e.  CC  ->  (
( 1  x.  A
)  +  ( 1  x.  A ) )  =  ( A  +  A ) )
74, 6eqtrd 2172 1  |-  ( A  e.  CC  ->  (
( 1  +  1 )  x.  A )  =  ( A  +  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480  (class class class)co 5774   CCcc 7632   1c1 7635    + caddc 7637    x. cmul 7639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-resscn 7726  ax-1cn 7727  ax-icn 7729  ax-addcl 7730  ax-mulcl 7732  ax-mulcom 7735  ax-mulass 7737  ax-distr 7738  ax-1rid 7741  ax-cnre 7745
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777
This theorem is referenced by:  eqneg  8506  2times  8862
  Copyright terms: Public domain W3C validator