| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trireciplem | Unicode version | ||
| Description: Lemma for trirecip 12012. Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
| Ref | Expression |
|---|---|
| trireciplem.1 |
|
| Ref | Expression |
|---|---|
| trireciplem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9758 |
. . . 4
| |
| 2 | 1zzd 9473 |
. . . 4
| |
| 3 | 1cnd 8162 |
. . . . . 6
| |
| 4 | divcnv 12008 |
. . . . . 6
| |
| 5 | 3, 4 | syl 14 |
. . . . 5
|
| 6 | nnex 9116 |
. . . . . . . 8
| |
| 7 | 6 | mptex 5865 |
. . . . . . 7
|
| 8 | 7 | a1i 9 |
. . . . . 6
|
| 9 | 6 | mptex 5865 |
. . . . . . 7
|
| 10 | 9 | a1i 9 |
. . . . . 6
|
| 11 | peano2nn 9122 |
. . . . . . . . 9
| |
| 12 | 11 | adantl 277 |
. . . . . . . 8
|
| 13 | 12 | nnrecred 9157 |
. . . . . . . 8
|
| 14 | oveq2 6009 |
. . . . . . . . 9
| |
| 15 | eqid 2229 |
. . . . . . . . 9
| |
| 16 | 14, 15 | fvmptg 5710 |
. . . . . . . 8
|
| 17 | 12, 13, 16 | syl2anc 411 |
. . . . . . 7
|
| 18 | simpr 110 |
. . . . . . . 8
| |
| 19 | oveq1 6008 |
. . . . . . . . . 10
| |
| 20 | 19 | oveq2d 6017 |
. . . . . . . . 9
|
| 21 | eqid 2229 |
. . . . . . . . 9
| |
| 22 | 20, 21 | fvmptg 5710 |
. . . . . . . 8
|
| 23 | 18, 13, 22 | syl2anc 411 |
. . . . . . 7
|
| 24 | 17, 23 | eqtr4d 2265 |
. . . . . 6
|
| 25 | 1, 2, 2, 8, 10, 24 | climshft2 11817 |
. . . . 5
|
| 26 | 5, 25 | mpbird 167 |
. . . 4
|
| 27 | seqex 10671 |
. . . . 5
| |
| 28 | 27 | a1i 9 |
. . . 4
|
| 29 | 13 | recnd 8175 |
. . . . 5
|
| 30 | 23, 29 | eqeltrd 2306 |
. . . 4
|
| 31 | 23 | oveq2d 6017 |
. . . . 5
|
| 32 | elfznn 10250 |
. . . . . . . . . . . 12
| |
| 33 | 32 | adantl 277 |
. . . . . . . . . . 11
|
| 34 | 33 | nncnd 9124 |
. . . . . . . . . 10
|
| 35 | peano2cn 8281 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | syl 14 |
. . . . . . . . 9
|
| 37 | peano2nn 9122 |
. . . . . . . . . . . 12
| |
| 38 | 33, 37 | syl 14 |
. . . . . . . . . . 11
|
| 39 | 33, 38 | nnmulcld 9159 |
. . . . . . . . . 10
|
| 40 | 39 | nncnd 9124 |
. . . . . . . . 9
|
| 41 | 39 | nnap0d 9156 |
. . . . . . . . 9
|
| 42 | 36, 34, 40, 41 | divsubdirapd 8977 |
. . . . . . . 8
|
| 43 | ax-1cn 8092 |
. . . . . . . . . 10
| |
| 44 | pncan2 8353 |
. . . . . . . . . 10
| |
| 45 | 34, 43, 44 | sylancl 413 |
. . . . . . . . 9
|
| 46 | 45 | oveq1d 6016 |
. . . . . . . 8
|
| 47 | 36 | mulridd 8163 |
. . . . . . . . . . 11
|
| 48 | 36, 34 | mulcomd 8168 |
. . . . . . . . . . 11
|
| 49 | 47, 48 | oveq12d 6019 |
. . . . . . . . . 10
|
| 50 | 1cnd 8162 |
. . . . . . . . . . 11
| |
| 51 | 33 | nnap0d 9156 |
. . . . . . . . . . 11
|
| 52 | 38 | nnap0d 9156 |
. . . . . . . . . . 11
|
| 53 | 50, 34, 36, 51, 52 | divcanap5d 8964 |
. . . . . . . . . 10
|
| 54 | 49, 53 | eqtr3d 2264 |
. . . . . . . . 9
|
| 55 | 34 | mulridd 8163 |
. . . . . . . . . . 11
|
| 56 | 55 | oveq1d 6016 |
. . . . . . . . . 10
|
| 57 | 50, 36, 34, 52, 51 | divcanap5d 8964 |
. . . . . . . . . 10
|
| 58 | 56, 57 | eqtr3d 2264 |
. . . . . . . . 9
|
| 59 | 54, 58 | oveq12d 6019 |
. . . . . . . 8
|
| 60 | 42, 46, 59 | 3eqtr3d 2270 |
. . . . . . 7
|
| 61 | 60 | sumeq2dv 11879 |
. . . . . 6
|
| 62 | oveq2 6009 |
. . . . . . 7
| |
| 63 | oveq2 6009 |
. . . . . . 7
| |
| 64 | oveq2 6009 |
. . . . . . . 8
| |
| 65 | 1div1e1 8851 |
. . . . . . . 8
| |
| 66 | 64, 65 | eqtrdi 2278 |
. . . . . . 7
|
| 67 | nnz 9465 |
. . . . . . . 8
| |
| 68 | 67 | adantl 277 |
. . . . . . 7
|
| 69 | 12, 1 | eleqtrdi 2322 |
. . . . . . 7
|
| 70 | elfznn 10250 |
. . . . . . . . . 10
| |
| 71 | 70 | adantl 277 |
. . . . . . . . 9
|
| 72 | 71 | nnrecred 9157 |
. . . . . . . 8
|
| 73 | 72 | recnd 8175 |
. . . . . . 7
|
| 74 | 62, 63, 66, 14, 68, 69, 73 | telfsum 11979 |
. . . . . 6
|
| 75 | 61, 74 | eqtrd 2262 |
. . . . 5
|
| 76 | elnnuz 9759 |
. . . . . . . . 9
| |
| 77 | 76 | biimpri 133 |
. . . . . . . 8
|
| 78 | 77 | adantl 277 |
. . . . . . 7
|
| 79 | eluzelz 9731 |
. . . . . . . . . . 11
| |
| 80 | 79 | adantl 277 |
. . . . . . . . . 10
|
| 81 | 80 | zcnd 9570 |
. . . . . . . . 9
|
| 82 | 81, 35 | syl 14 |
. . . . . . . . 9
|
| 83 | 81, 82 | mulcld 8167 |
. . . . . . . 8
|
| 84 | 78 | nnap0d 9156 |
. . . . . . . . 9
|
| 85 | 78, 37 | syl 14 |
. . . . . . . . . 10
|
| 86 | 85 | nnap0d 9156 |
. . . . . . . . 9
|
| 87 | 81, 82, 84, 86 | mulap0d 8805 |
. . . . . . . 8
|
| 88 | 83, 87 | recclapd 8928 |
. . . . . . 7
|
| 89 | id 19 |
. . . . . . . . . 10
| |
| 90 | oveq1 6008 |
. . . . . . . . . 10
| |
| 91 | 89, 90 | oveq12d 6019 |
. . . . . . . . 9
|
| 92 | 91 | oveq2d 6017 |
. . . . . . . 8
|
| 93 | trireciplem.1 |
. . . . . . . 8
| |
| 94 | 92, 93 | fvmptg 5710 |
. . . . . . 7
|
| 95 | 78, 88, 94 | syl2anc 411 |
. . . . . 6
|
| 96 | 18, 1 | eleqtrdi 2322 |
. . . . . 6
|
| 97 | 95, 96, 88 | fsum3ser 11908 |
. . . . 5
|
| 98 | 31, 75, 97 | 3eqtr2rd 2269 |
. . . 4
|
| 99 | 1, 2, 26, 3, 28, 30, 98 | climsubc2 11844 |
. . 3
|
| 100 | 99 | mptru 1404 |
. 2
|
| 101 | 1m0e1 9223 |
. 2
| |
| 102 | 100, 101 | breqtri 4108 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-frec 6537 df-1o 6562 df-oadd 6566 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-fz 10205 df-fzo 10339 df-seqfrec 10670 df-exp 10761 df-ihash 10998 df-shft 11326 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-clim 11790 df-sumdc 11865 |
| This theorem is referenced by: trirecip 12012 |
| Copyright terms: Public domain | W3C validator |