ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trireciplem Unicode version

Theorem trireciplem 11262
Description: Lemma for trirecip 11263. Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Hypothesis
Ref Expression
trireciplem.1  |-  F  =  ( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) )
Assertion
Ref Expression
trireciplem  |-  seq 1
(  +  ,  F
)  ~~>  1

Proof of Theorem trireciplem
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9354 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9074 . . . 4  |-  ( T. 
->  1  e.  ZZ )
3 1cnd 7775 . . . . . 6  |-  ( T. 
->  1  e.  CC )
4 divcnv 11259 . . . . . 6  |-  ( 1  e.  CC  ->  (
n  e.  NN  |->  ( 1  /  n ) )  ~~>  0 )
53, 4syl 14 . . . . 5  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  n
) )  ~~>  0 )
6 nnex 8719 . . . . . . . 8  |-  NN  e.  _V
76mptex 5639 . . . . . . 7  |-  ( n  e.  NN  |->  ( 1  /  ( n  + 
1 ) ) )  e.  _V
87a1i 9 . . . . . 6  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  (
n  +  1 ) ) )  e.  _V )
96mptex 5639 . . . . . . 7  |-  ( n  e.  NN  |->  ( 1  /  n ) )  e.  _V
109a1i 9 . . . . . 6  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  n
) )  e.  _V )
11 peano2nn 8725 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
1211adantl 275 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  (
k  +  1 )  e.  NN )
1312nnrecred 8760 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  /  ( k  +  1 ) )  e.  RR )
14 oveq2 5775 . . . . . . . . 9  |-  ( n  =  ( k  +  1 )  ->  (
1  /  n )  =  ( 1  / 
( k  +  1 ) ) )
15 eqid 2137 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( 1  /  n ) )  =  ( n  e.  NN  |->  ( 1  /  n ) )
1614, 15fvmptg 5490 . . . . . . . 8  |-  ( ( ( k  +  1 )  e.  NN  /\  ( 1  /  (
k  +  1 ) )  e.  RR )  ->  ( ( n  e.  NN  |->  ( 1  /  n ) ) `
 ( k  +  1 ) )  =  ( 1  /  (
k  +  1 ) ) )
1712, 13, 16syl2anc 408 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  n
) ) `  (
k  +  1 ) )  =  ( 1  /  ( k  +  1 ) ) )
18 simpr 109 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  NN )
19 oveq1 5774 . . . . . . . . . 10  |-  ( n  =  k  ->  (
n  +  1 )  =  ( k  +  1 ) )
2019oveq2d 5783 . . . . . . . . 9  |-  ( n  =  k  ->  (
1  /  ( n  +  1 ) )  =  ( 1  / 
( k  +  1 ) ) )
21 eqid 2137 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( 1  /  ( n  + 
1 ) ) )  =  ( n  e.  NN  |->  ( 1  / 
( n  +  1 ) ) )
2220, 21fvmptg 5490 . . . . . . . 8  |-  ( ( k  e.  NN  /\  ( 1  /  (
k  +  1 ) )  e.  RR )  ->  ( ( n  e.  NN  |->  ( 1  /  ( n  + 
1 ) ) ) `
 k )  =  ( 1  /  (
k  +  1 ) ) )
2318, 13, 22syl2anc 408 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  (
n  +  1 ) ) ) `  k
)  =  ( 1  /  ( k  +  1 ) ) )
2417, 23eqtr4d 2173 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  n
) ) `  (
k  +  1 ) )  =  ( ( n  e.  NN  |->  ( 1  /  ( n  +  1 ) ) ) `  k ) )
251, 2, 2, 8, 10, 24climshft2 11068 . . . . 5  |-  ( T. 
->  ( ( n  e.  NN  |->  ( 1  / 
( n  +  1 ) ) )  ~~>  0  <->  (
n  e.  NN  |->  ( 1  /  n ) )  ~~>  0 ) )
265, 25mpbird 166 . . . 4  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  (
n  +  1 ) ) )  ~~>  0 )
27 seqex 10213 . . . . 5  |-  seq 1
(  +  ,  F
)  e.  _V
2827a1i 9 . . . 4  |-  ( T. 
->  seq 1 (  +  ,  F )  e. 
_V )
2913recnd 7787 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  /  ( k  +  1 ) )  e.  CC )
3023, 29eqeltrd 2214 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  (
n  +  1 ) ) ) `  k
)  e.  CC )
3123oveq2d 5783 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  -  ( ( n  e.  NN  |->  ( 1  /  ( n  +  1 ) ) ) `  k ) )  =  ( 1  -  ( 1  / 
( k  +  1 ) ) ) )
32 elfznn 9827 . . . . . . . . . . . 12  |-  ( j  e.  ( 1 ... k )  ->  j  e.  NN )
3332adantl 275 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  j  e.  NN )
3433nncnd 8727 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  j  e.  CC )
35 peano2cn 7890 . . . . . . . . . 10  |-  ( j  e.  CC  ->  (
j  +  1 )  e.  CC )
3634, 35syl 14 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  +  1 )  e.  CC )
37 peano2nn 8725 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  (
j  +  1 )  e.  NN )
3833, 37syl 14 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  +  1 )  e.  NN )
3933, 38nnmulcld 8762 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  x.  ( j  +  1 ) )  e.  NN )
4039nncnd 8727 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  x.  ( j  +  1 ) )  e.  CC )
4139nnap0d 8759 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  x.  ( j  +  1 ) ) #  0 )
4236, 34, 40, 41divsubdirapd 8583 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  -  j
)  /  ( j  x.  ( j  +  1 ) ) )  =  ( ( ( j  +  1 )  /  ( j  x.  ( j  +  1 ) ) )  -  ( j  /  (
j  x.  ( j  +  1 ) ) ) ) )
43 ax-1cn 7706 . . . . . . . . . 10  |-  1  e.  CC
44 pncan2 7962 . . . . . . . . . 10  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( ( j  +  1 )  -  j
)  =  1 )
4534, 43, 44sylancl 409 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  +  1 )  -  j )  =  1 )
4645oveq1d 5782 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  -  j
)  /  ( j  x.  ( j  +  1 ) ) )  =  ( 1  / 
( j  x.  (
j  +  1 ) ) ) )
4736mulid1d 7776 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  +  1 )  x.  1 )  =  ( j  +  1 ) )
4836, 34mulcomd 7780 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  +  1 )  x.  j )  =  ( j  x.  ( j  +  1 ) ) )
4947, 48oveq12d 5785 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  x.  1 )  /  ( ( j  +  1 )  x.  j ) )  =  ( ( j  +  1 )  / 
( j  x.  (
j  +  1 ) ) ) )
50 1cnd 7775 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  1  e.  CC )
5133nnap0d 8759 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  j #  0 )
5238nnap0d 8759 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  +  1 ) #  0 )
5350, 34, 36, 51, 52divcanap5d 8570 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  x.  1 )  /  ( ( j  +  1 )  x.  j ) )  =  ( 1  / 
j ) )
5449, 53eqtr3d 2172 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  +  1 )  /  ( j  x.  ( j  +  1 ) ) )  =  ( 1  / 
j ) )
5534mulid1d 7776 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  x.  1 )  =  j )
5655oveq1d 5782 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  x.  1 )  /  ( j  x.  ( j  +  1 ) ) )  =  ( j  / 
( j  x.  (
j  +  1 ) ) ) )
5750, 36, 34, 52, 51divcanap5d 8570 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  x.  1 )  /  ( j  x.  ( j  +  1 ) ) )  =  ( 1  / 
( j  +  1 ) ) )
5856, 57eqtr3d 2172 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  /  ( j  x.  ( j  +  1 ) ) )  =  ( 1  / 
( j  +  1 ) ) )
5954, 58oveq12d 5785 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  /  (
j  x.  ( j  +  1 ) ) )  -  ( j  /  ( j  x.  ( j  +  1 ) ) ) )  =  ( ( 1  /  j )  -  ( 1  /  (
j  +  1 ) ) ) )
6042, 46, 593eqtr3d 2178 . . . . . . 7  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
1  /  ( j  x.  ( j  +  1 ) ) )  =  ( ( 1  /  j )  -  ( 1  /  (
j  +  1 ) ) ) )
6160sumeq2dv 11130 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  sum_ j  e.  ( 1 ... k
) ( 1  / 
( j  x.  (
j  +  1 ) ) )  =  sum_ j  e.  ( 1 ... k ) ( ( 1  /  j
)  -  ( 1  /  ( j  +  1 ) ) ) )
62 oveq2 5775 . . . . . . 7  |-  ( n  =  j  ->  (
1  /  n )  =  ( 1  / 
j ) )
63 oveq2 5775 . . . . . . 7  |-  ( n  =  ( j  +  1 )  ->  (
1  /  n )  =  ( 1  / 
( j  +  1 ) ) )
64 oveq2 5775 . . . . . . . 8  |-  ( n  =  1  ->  (
1  /  n )  =  ( 1  / 
1 ) )
65 1div1e1 8457 . . . . . . . 8  |-  ( 1  /  1 )  =  1
6664, 65syl6eq 2186 . . . . . . 7  |-  ( n  =  1  ->  (
1  /  n )  =  1 )
67 nnz 9066 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  ZZ )
6867adantl 275 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  ZZ )
6912, 1eleqtrdi 2230 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
k  +  1 )  e.  ( ZZ>= `  1
) )
70 elfznn 9827 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( k  +  1 ) )  ->  n  e.  NN )
7170adantl 275 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  n  e.  ( 1 ... (
k  +  1 ) ) )  ->  n  e.  NN )
7271nnrecred 8760 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  n  e.  ( 1 ... (
k  +  1 ) ) )  ->  (
1  /  n )  e.  RR )
7372recnd 7787 . . . . . . 7  |-  ( ( ( T.  /\  k  e.  NN )  /\  n  e.  ( 1 ... (
k  +  1 ) ) )  ->  (
1  /  n )  e.  CC )
7462, 63, 66, 14, 68, 69, 73telfsum 11230 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  sum_ j  e.  ( 1 ... k
) ( ( 1  /  j )  -  ( 1  /  (
j  +  1 ) ) )  =  ( 1  -  ( 1  /  ( k  +  1 ) ) ) )
7561, 74eqtrd 2170 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  sum_ j  e.  ( 1 ... k
) ( 1  / 
( j  x.  (
j  +  1 ) ) )  =  ( 1  -  ( 1  /  ( k  +  1 ) ) ) )
76 elnnuz 9355 . . . . . . . . 9  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
7776biimpri 132 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  NN )
7877adantl 275 . . . . . . 7  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  NN )
79 eluzelz 9328 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  ZZ )
8079adantl 275 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  ZZ )
8180zcnd 9167 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  CC )
8281, 35syl 14 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( j  +  1 )  e.  CC )
8381, 82mulcld 7779 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( j  x.  ( j  +  1 ) )  e.  CC )
8478nnap0d 8759 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  j #  0
)
8578, 37syl 14 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( j  +  1 )  e.  NN )
8685nnap0d 8759 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( j  +  1 ) #  0 )
8781, 82, 84, 86mulap0d 8412 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( j  x.  ( j  +  1 ) ) #  0 )
8883, 87recclapd 8534 . . . . . . 7  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( 1  /  ( j  x.  ( j  +  1 ) ) )  e.  CC )
89 id 19 . . . . . . . . . 10  |-  ( n  =  j  ->  n  =  j )
90 oveq1 5774 . . . . . . . . . 10  |-  ( n  =  j  ->  (
n  +  1 )  =  ( j  +  1 ) )
9189, 90oveq12d 5785 . . . . . . . . 9  |-  ( n  =  j  ->  (
n  x.  ( n  +  1 ) )  =  ( j  x.  ( j  +  1 ) ) )
9291oveq2d 5783 . . . . . . . 8  |-  ( n  =  j  ->  (
1  /  ( n  x.  ( n  + 
1 ) ) )  =  ( 1  / 
( j  x.  (
j  +  1 ) ) ) )
93 trireciplem.1 . . . . . . . 8  |-  F  =  ( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) )
9492, 93fvmptg 5490 . . . . . . 7  |-  ( ( j  e.  NN  /\  ( 1  /  (
j  x.  ( j  +  1 ) ) )  e.  CC )  ->  ( F `  j )  =  ( 1  /  ( j  x.  ( j  +  1 ) ) ) )
9578, 88, 94syl2anc 408 . . . . . 6  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( F `  j )  =  ( 1  /  ( j  x.  ( j  +  1 ) ) ) )
9618, 1eleqtrdi 2230 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  ( ZZ>= `  1 )
)
9795, 96, 88fsum3ser 11159 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  sum_ j  e.  ( 1 ... k
) ( 1  / 
( j  x.  (
j  +  1 ) ) )  =  (  seq 1 (  +  ,  F ) `  k ) )
9831, 75, 973eqtr2rd 2177 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  F ) `  k
)  =  ( 1  -  ( ( n  e.  NN  |->  ( 1  /  ( n  + 
1 ) ) ) `
 k ) ) )
991, 2, 26, 3, 28, 30, 98climsubc2 11095 . . 3  |-  ( T. 
->  seq 1 (  +  ,  F )  ~~>  ( 1  -  0 ) )
10099mptru 1340 . 2  |-  seq 1
(  +  ,  F
)  ~~>  ( 1  -  0 )
101 1m0e1 8826 . 2  |-  ( 1  -  0 )  =  1
102100, 101breqtri 3948 1  |-  seq 1
(  +  ,  F
)  ~~>  1
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1331   T. wtru 1332    e. wcel 1480   _Vcvv 2681   class class class wbr 3924    |-> cmpt 3984   ` cfv 5118  (class class class)co 5767   CCcc 7611   RRcr 7612   0cc0 7613   1c1 7614    + caddc 7616    x. cmul 7618    - cmin 7926    / cdiv 8425   NNcn 8713   ZZcz 9047   ZZ>=cuz 9319   ...cfz 9783    seqcseq 10211    ~~> cli 11040   sum_csu 11115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-frec 6281  df-1o 6306  df-oadd 6310  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-seqfrec 10212  df-exp 10286  df-ihash 10515  df-shft 10580  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-clim 11041  df-sumdc 11116
This theorem is referenced by:  trirecip  11263
  Copyright terms: Public domain W3C validator