| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trireciplem | Unicode version | ||
| Description: Lemma for trirecip 11666. Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
| Ref | Expression |
|---|---|
| trireciplem.1 |
|
| Ref | Expression |
|---|---|
| trireciplem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9637 |
. . . 4
| |
| 2 | 1zzd 9353 |
. . . 4
| |
| 3 | 1cnd 8042 |
. . . . . 6
| |
| 4 | divcnv 11662 |
. . . . . 6
| |
| 5 | 3, 4 | syl 14 |
. . . . 5
|
| 6 | nnex 8996 |
. . . . . . . 8
| |
| 7 | 6 | mptex 5788 |
. . . . . . 7
|
| 8 | 7 | a1i 9 |
. . . . . 6
|
| 9 | 6 | mptex 5788 |
. . . . . . 7
|
| 10 | 9 | a1i 9 |
. . . . . 6
|
| 11 | peano2nn 9002 |
. . . . . . . . 9
| |
| 12 | 11 | adantl 277 |
. . . . . . . 8
|
| 13 | 12 | nnrecred 9037 |
. . . . . . . 8
|
| 14 | oveq2 5930 |
. . . . . . . . 9
| |
| 15 | eqid 2196 |
. . . . . . . . 9
| |
| 16 | 14, 15 | fvmptg 5637 |
. . . . . . . 8
|
| 17 | 12, 13, 16 | syl2anc 411 |
. . . . . . 7
|
| 18 | simpr 110 |
. . . . . . . 8
| |
| 19 | oveq1 5929 |
. . . . . . . . . 10
| |
| 20 | 19 | oveq2d 5938 |
. . . . . . . . 9
|
| 21 | eqid 2196 |
. . . . . . . . 9
| |
| 22 | 20, 21 | fvmptg 5637 |
. . . . . . . 8
|
| 23 | 18, 13, 22 | syl2anc 411 |
. . . . . . 7
|
| 24 | 17, 23 | eqtr4d 2232 |
. . . . . 6
|
| 25 | 1, 2, 2, 8, 10, 24 | climshft2 11471 |
. . . . 5
|
| 26 | 5, 25 | mpbird 167 |
. . . 4
|
| 27 | seqex 10541 |
. . . . 5
| |
| 28 | 27 | a1i 9 |
. . . 4
|
| 29 | 13 | recnd 8055 |
. . . . 5
|
| 30 | 23, 29 | eqeltrd 2273 |
. . . 4
|
| 31 | 23 | oveq2d 5938 |
. . . . 5
|
| 32 | elfznn 10129 |
. . . . . . . . . . . 12
| |
| 33 | 32 | adantl 277 |
. . . . . . . . . . 11
|
| 34 | 33 | nncnd 9004 |
. . . . . . . . . 10
|
| 35 | peano2cn 8161 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | syl 14 |
. . . . . . . . 9
|
| 37 | peano2nn 9002 |
. . . . . . . . . . . 12
| |
| 38 | 33, 37 | syl 14 |
. . . . . . . . . . 11
|
| 39 | 33, 38 | nnmulcld 9039 |
. . . . . . . . . 10
|
| 40 | 39 | nncnd 9004 |
. . . . . . . . 9
|
| 41 | 39 | nnap0d 9036 |
. . . . . . . . 9
|
| 42 | 36, 34, 40, 41 | divsubdirapd 8857 |
. . . . . . . 8
|
| 43 | ax-1cn 7972 |
. . . . . . . . . 10
| |
| 44 | pncan2 8233 |
. . . . . . . . . 10
| |
| 45 | 34, 43, 44 | sylancl 413 |
. . . . . . . . 9
|
| 46 | 45 | oveq1d 5937 |
. . . . . . . 8
|
| 47 | 36 | mulridd 8043 |
. . . . . . . . . . 11
|
| 48 | 36, 34 | mulcomd 8048 |
. . . . . . . . . . 11
|
| 49 | 47, 48 | oveq12d 5940 |
. . . . . . . . . 10
|
| 50 | 1cnd 8042 |
. . . . . . . . . . 11
| |
| 51 | 33 | nnap0d 9036 |
. . . . . . . . . . 11
|
| 52 | 38 | nnap0d 9036 |
. . . . . . . . . . 11
|
| 53 | 50, 34, 36, 51, 52 | divcanap5d 8844 |
. . . . . . . . . 10
|
| 54 | 49, 53 | eqtr3d 2231 |
. . . . . . . . 9
|
| 55 | 34 | mulridd 8043 |
. . . . . . . . . . 11
|
| 56 | 55 | oveq1d 5937 |
. . . . . . . . . 10
|
| 57 | 50, 36, 34, 52, 51 | divcanap5d 8844 |
. . . . . . . . . 10
|
| 58 | 56, 57 | eqtr3d 2231 |
. . . . . . . . 9
|
| 59 | 54, 58 | oveq12d 5940 |
. . . . . . . 8
|
| 60 | 42, 46, 59 | 3eqtr3d 2237 |
. . . . . . 7
|
| 61 | 60 | sumeq2dv 11533 |
. . . . . 6
|
| 62 | oveq2 5930 |
. . . . . . 7
| |
| 63 | oveq2 5930 |
. . . . . . 7
| |
| 64 | oveq2 5930 |
. . . . . . . 8
| |
| 65 | 1div1e1 8731 |
. . . . . . . 8
| |
| 66 | 64, 65 | eqtrdi 2245 |
. . . . . . 7
|
| 67 | nnz 9345 |
. . . . . . . 8
| |
| 68 | 67 | adantl 277 |
. . . . . . 7
|
| 69 | 12, 1 | eleqtrdi 2289 |
. . . . . . 7
|
| 70 | elfznn 10129 |
. . . . . . . . . 10
| |
| 71 | 70 | adantl 277 |
. . . . . . . . 9
|
| 72 | 71 | nnrecred 9037 |
. . . . . . . 8
|
| 73 | 72 | recnd 8055 |
. . . . . . 7
|
| 74 | 62, 63, 66, 14, 68, 69, 73 | telfsum 11633 |
. . . . . 6
|
| 75 | 61, 74 | eqtrd 2229 |
. . . . 5
|
| 76 | elnnuz 9638 |
. . . . . . . . 9
| |
| 77 | 76 | biimpri 133 |
. . . . . . . 8
|
| 78 | 77 | adantl 277 |
. . . . . . 7
|
| 79 | eluzelz 9610 |
. . . . . . . . . . 11
| |
| 80 | 79 | adantl 277 |
. . . . . . . . . 10
|
| 81 | 80 | zcnd 9449 |
. . . . . . . . 9
|
| 82 | 81, 35 | syl 14 |
. . . . . . . . 9
|
| 83 | 81, 82 | mulcld 8047 |
. . . . . . . 8
|
| 84 | 78 | nnap0d 9036 |
. . . . . . . . 9
|
| 85 | 78, 37 | syl 14 |
. . . . . . . . . 10
|
| 86 | 85 | nnap0d 9036 |
. . . . . . . . 9
|
| 87 | 81, 82, 84, 86 | mulap0d 8685 |
. . . . . . . 8
|
| 88 | 83, 87 | recclapd 8808 |
. . . . . . 7
|
| 89 | id 19 |
. . . . . . . . . 10
| |
| 90 | oveq1 5929 |
. . . . . . . . . 10
| |
| 91 | 89, 90 | oveq12d 5940 |
. . . . . . . . 9
|
| 92 | 91 | oveq2d 5938 |
. . . . . . . 8
|
| 93 | trireciplem.1 |
. . . . . . . 8
| |
| 94 | 92, 93 | fvmptg 5637 |
. . . . . . 7
|
| 95 | 78, 88, 94 | syl2anc 411 |
. . . . . 6
|
| 96 | 18, 1 | eleqtrdi 2289 |
. . . . . 6
|
| 97 | 95, 96, 88 | fsum3ser 11562 |
. . . . 5
|
| 98 | 31, 75, 97 | 3eqtr2rd 2236 |
. . . 4
|
| 99 | 1, 2, 26, 3, 28, 30, 98 | climsubc2 11498 |
. . 3
|
| 100 | 99 | mptru 1373 |
. 2
|
| 101 | 1m0e1 9103 |
. 2
| |
| 102 | 100, 101 | breqtri 4058 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-shft 10980 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 |
| This theorem is referenced by: trirecip 11666 |
| Copyright terms: Public domain | W3C validator |