ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trireciplem Unicode version

Theorem trireciplem 11665
Description: Lemma for trirecip 11666. Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Hypothesis
Ref Expression
trireciplem.1  |-  F  =  ( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) )
Assertion
Ref Expression
trireciplem  |-  seq 1
(  +  ,  F
)  ~~>  1

Proof of Theorem trireciplem
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9637 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9353 . . . 4  |-  ( T. 
->  1  e.  ZZ )
3 1cnd 8042 . . . . . 6  |-  ( T. 
->  1  e.  CC )
4 divcnv 11662 . . . . . 6  |-  ( 1  e.  CC  ->  (
n  e.  NN  |->  ( 1  /  n ) )  ~~>  0 )
53, 4syl 14 . . . . 5  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  n
) )  ~~>  0 )
6 nnex 8996 . . . . . . . 8  |-  NN  e.  _V
76mptex 5788 . . . . . . 7  |-  ( n  e.  NN  |->  ( 1  /  ( n  + 
1 ) ) )  e.  _V
87a1i 9 . . . . . 6  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  (
n  +  1 ) ) )  e.  _V )
96mptex 5788 . . . . . . 7  |-  ( n  e.  NN  |->  ( 1  /  n ) )  e.  _V
109a1i 9 . . . . . 6  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  n
) )  e.  _V )
11 peano2nn 9002 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
1211adantl 277 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  (
k  +  1 )  e.  NN )
1312nnrecred 9037 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  /  ( k  +  1 ) )  e.  RR )
14 oveq2 5930 . . . . . . . . 9  |-  ( n  =  ( k  +  1 )  ->  (
1  /  n )  =  ( 1  / 
( k  +  1 ) ) )
15 eqid 2196 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( 1  /  n ) )  =  ( n  e.  NN  |->  ( 1  /  n ) )
1614, 15fvmptg 5637 . . . . . . . 8  |-  ( ( ( k  +  1 )  e.  NN  /\  ( 1  /  (
k  +  1 ) )  e.  RR )  ->  ( ( n  e.  NN  |->  ( 1  /  n ) ) `
 ( k  +  1 ) )  =  ( 1  /  (
k  +  1 ) ) )
1712, 13, 16syl2anc 411 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  n
) ) `  (
k  +  1 ) )  =  ( 1  /  ( k  +  1 ) ) )
18 simpr 110 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  NN )
19 oveq1 5929 . . . . . . . . . 10  |-  ( n  =  k  ->  (
n  +  1 )  =  ( k  +  1 ) )
2019oveq2d 5938 . . . . . . . . 9  |-  ( n  =  k  ->  (
1  /  ( n  +  1 ) )  =  ( 1  / 
( k  +  1 ) ) )
21 eqid 2196 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( 1  /  ( n  + 
1 ) ) )  =  ( n  e.  NN  |->  ( 1  / 
( n  +  1 ) ) )
2220, 21fvmptg 5637 . . . . . . . 8  |-  ( ( k  e.  NN  /\  ( 1  /  (
k  +  1 ) )  e.  RR )  ->  ( ( n  e.  NN  |->  ( 1  /  ( n  + 
1 ) ) ) `
 k )  =  ( 1  /  (
k  +  1 ) ) )
2318, 13, 22syl2anc 411 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  (
n  +  1 ) ) ) `  k
)  =  ( 1  /  ( k  +  1 ) ) )
2417, 23eqtr4d 2232 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  n
) ) `  (
k  +  1 ) )  =  ( ( n  e.  NN  |->  ( 1  /  ( n  +  1 ) ) ) `  k ) )
251, 2, 2, 8, 10, 24climshft2 11471 . . . . 5  |-  ( T. 
->  ( ( n  e.  NN  |->  ( 1  / 
( n  +  1 ) ) )  ~~>  0  <->  (
n  e.  NN  |->  ( 1  /  n ) )  ~~>  0 ) )
265, 25mpbird 167 . . . 4  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  (
n  +  1 ) ) )  ~~>  0 )
27 seqex 10541 . . . . 5  |-  seq 1
(  +  ,  F
)  e.  _V
2827a1i 9 . . . 4  |-  ( T. 
->  seq 1 (  +  ,  F )  e. 
_V )
2913recnd 8055 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  /  ( k  +  1 ) )  e.  CC )
3023, 29eqeltrd 2273 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  (
n  +  1 ) ) ) `  k
)  e.  CC )
3123oveq2d 5938 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  -  ( ( n  e.  NN  |->  ( 1  /  ( n  +  1 ) ) ) `  k ) )  =  ( 1  -  ( 1  / 
( k  +  1 ) ) ) )
32 elfznn 10129 . . . . . . . . . . . 12  |-  ( j  e.  ( 1 ... k )  ->  j  e.  NN )
3332adantl 277 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  j  e.  NN )
3433nncnd 9004 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  j  e.  CC )
35 peano2cn 8161 . . . . . . . . . 10  |-  ( j  e.  CC  ->  (
j  +  1 )  e.  CC )
3634, 35syl 14 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  +  1 )  e.  CC )
37 peano2nn 9002 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  (
j  +  1 )  e.  NN )
3833, 37syl 14 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  +  1 )  e.  NN )
3933, 38nnmulcld 9039 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  x.  ( j  +  1 ) )  e.  NN )
4039nncnd 9004 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  x.  ( j  +  1 ) )  e.  CC )
4139nnap0d 9036 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  x.  ( j  +  1 ) ) #  0 )
4236, 34, 40, 41divsubdirapd 8857 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  -  j
)  /  ( j  x.  ( j  +  1 ) ) )  =  ( ( ( j  +  1 )  /  ( j  x.  ( j  +  1 ) ) )  -  ( j  /  (
j  x.  ( j  +  1 ) ) ) ) )
43 ax-1cn 7972 . . . . . . . . . 10  |-  1  e.  CC
44 pncan2 8233 . . . . . . . . . 10  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( ( j  +  1 )  -  j
)  =  1 )
4534, 43, 44sylancl 413 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  +  1 )  -  j )  =  1 )
4645oveq1d 5937 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  -  j
)  /  ( j  x.  ( j  +  1 ) ) )  =  ( 1  / 
( j  x.  (
j  +  1 ) ) ) )
4736mulridd 8043 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  +  1 )  x.  1 )  =  ( j  +  1 ) )
4836, 34mulcomd 8048 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  +  1 )  x.  j )  =  ( j  x.  ( j  +  1 ) ) )
4947, 48oveq12d 5940 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  x.  1 )  /  ( ( j  +  1 )  x.  j ) )  =  ( ( j  +  1 )  / 
( j  x.  (
j  +  1 ) ) ) )
50 1cnd 8042 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  1  e.  CC )
5133nnap0d 9036 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  j #  0 )
5238nnap0d 9036 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  +  1 ) #  0 )
5350, 34, 36, 51, 52divcanap5d 8844 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  x.  1 )  /  ( ( j  +  1 )  x.  j ) )  =  ( 1  / 
j ) )
5449, 53eqtr3d 2231 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  +  1 )  /  ( j  x.  ( j  +  1 ) ) )  =  ( 1  / 
j ) )
5534mulridd 8043 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  x.  1 )  =  j )
5655oveq1d 5937 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  x.  1 )  /  ( j  x.  ( j  +  1 ) ) )  =  ( j  / 
( j  x.  (
j  +  1 ) ) ) )
5750, 36, 34, 52, 51divcanap5d 8844 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  x.  1 )  /  ( j  x.  ( j  +  1 ) ) )  =  ( 1  / 
( j  +  1 ) ) )
5856, 57eqtr3d 2231 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  /  ( j  x.  ( j  +  1 ) ) )  =  ( 1  / 
( j  +  1 ) ) )
5954, 58oveq12d 5940 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  /  (
j  x.  ( j  +  1 ) ) )  -  ( j  /  ( j  x.  ( j  +  1 ) ) ) )  =  ( ( 1  /  j )  -  ( 1  /  (
j  +  1 ) ) ) )
6042, 46, 593eqtr3d 2237 . . . . . . 7  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
1  /  ( j  x.  ( j  +  1 ) ) )  =  ( ( 1  /  j )  -  ( 1  /  (
j  +  1 ) ) ) )
6160sumeq2dv 11533 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  sum_ j  e.  ( 1 ... k
) ( 1  / 
( j  x.  (
j  +  1 ) ) )  =  sum_ j  e.  ( 1 ... k ) ( ( 1  /  j
)  -  ( 1  /  ( j  +  1 ) ) ) )
62 oveq2 5930 . . . . . . 7  |-  ( n  =  j  ->  (
1  /  n )  =  ( 1  / 
j ) )
63 oveq2 5930 . . . . . . 7  |-  ( n  =  ( j  +  1 )  ->  (
1  /  n )  =  ( 1  / 
( j  +  1 ) ) )
64 oveq2 5930 . . . . . . . 8  |-  ( n  =  1  ->  (
1  /  n )  =  ( 1  / 
1 ) )
65 1div1e1 8731 . . . . . . . 8  |-  ( 1  /  1 )  =  1
6664, 65eqtrdi 2245 . . . . . . 7  |-  ( n  =  1  ->  (
1  /  n )  =  1 )
67 nnz 9345 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  ZZ )
6867adantl 277 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  ZZ )
6912, 1eleqtrdi 2289 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
k  +  1 )  e.  ( ZZ>= `  1
) )
70 elfznn 10129 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( k  +  1 ) )  ->  n  e.  NN )
7170adantl 277 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  n  e.  ( 1 ... (
k  +  1 ) ) )  ->  n  e.  NN )
7271nnrecred 9037 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  n  e.  ( 1 ... (
k  +  1 ) ) )  ->  (
1  /  n )  e.  RR )
7372recnd 8055 . . . . . . 7  |-  ( ( ( T.  /\  k  e.  NN )  /\  n  e.  ( 1 ... (
k  +  1 ) ) )  ->  (
1  /  n )  e.  CC )
7462, 63, 66, 14, 68, 69, 73telfsum 11633 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  sum_ j  e.  ( 1 ... k
) ( ( 1  /  j )  -  ( 1  /  (
j  +  1 ) ) )  =  ( 1  -  ( 1  /  ( k  +  1 ) ) ) )
7561, 74eqtrd 2229 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  sum_ j  e.  ( 1 ... k
) ( 1  / 
( j  x.  (
j  +  1 ) ) )  =  ( 1  -  ( 1  /  ( k  +  1 ) ) ) )
76 elnnuz 9638 . . . . . . . . 9  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
7776biimpri 133 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  NN )
7877adantl 277 . . . . . . 7  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  NN )
79 eluzelz 9610 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  ZZ )
8079adantl 277 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  ZZ )
8180zcnd 9449 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  CC )
8281, 35syl 14 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( j  +  1 )  e.  CC )
8381, 82mulcld 8047 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( j  x.  ( j  +  1 ) )  e.  CC )
8478nnap0d 9036 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  j #  0
)
8578, 37syl 14 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( j  +  1 )  e.  NN )
8685nnap0d 9036 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( j  +  1 ) #  0 )
8781, 82, 84, 86mulap0d 8685 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( j  x.  ( j  +  1 ) ) #  0 )
8883, 87recclapd 8808 . . . . . . 7  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( 1  /  ( j  x.  ( j  +  1 ) ) )  e.  CC )
89 id 19 . . . . . . . . . 10  |-  ( n  =  j  ->  n  =  j )
90 oveq1 5929 . . . . . . . . . 10  |-  ( n  =  j  ->  (
n  +  1 )  =  ( j  +  1 ) )
9189, 90oveq12d 5940 . . . . . . . . 9  |-  ( n  =  j  ->  (
n  x.  ( n  +  1 ) )  =  ( j  x.  ( j  +  1 ) ) )
9291oveq2d 5938 . . . . . . . 8  |-  ( n  =  j  ->  (
1  /  ( n  x.  ( n  + 
1 ) ) )  =  ( 1  / 
( j  x.  (
j  +  1 ) ) ) )
93 trireciplem.1 . . . . . . . 8  |-  F  =  ( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) )
9492, 93fvmptg 5637 . . . . . . 7  |-  ( ( j  e.  NN  /\  ( 1  /  (
j  x.  ( j  +  1 ) ) )  e.  CC )  ->  ( F `  j )  =  ( 1  /  ( j  x.  ( j  +  1 ) ) ) )
9578, 88, 94syl2anc 411 . . . . . 6  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( F `  j )  =  ( 1  /  ( j  x.  ( j  +  1 ) ) ) )
9618, 1eleqtrdi 2289 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  ( ZZ>= `  1 )
)
9795, 96, 88fsum3ser 11562 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  sum_ j  e.  ( 1 ... k
) ( 1  / 
( j  x.  (
j  +  1 ) ) )  =  (  seq 1 (  +  ,  F ) `  k ) )
9831, 75, 973eqtr2rd 2236 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  F ) `  k
)  =  ( 1  -  ( ( n  e.  NN  |->  ( 1  /  ( n  + 
1 ) ) ) `
 k ) ) )
991, 2, 26, 3, 28, 30, 98climsubc2 11498 . . 3  |-  ( T. 
->  seq 1 (  +  ,  F )  ~~>  ( 1  -  0 ) )
10099mptru 1373 . 2  |-  seq 1
(  +  ,  F
)  ~~>  ( 1  -  0 )
101 1m0e1 9103 . 2  |-  ( 1  -  0 )  =  1
102100, 101breqtri 4058 1  |-  seq 1
(  +  ,  F
)  ~~>  1
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   T. wtru 1365    e. wcel 2167   _Vcvv 2763   class class class wbr 4033    |-> cmpt 4094   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    - cmin 8197    / cdiv 8699   NNcn 8990   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    seqcseq 10539    ~~> cli 11443   sum_csu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-shft 10980  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  trirecip  11666
  Copyright terms: Public domain W3C validator