ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trireciplem Unicode version

Theorem trireciplem 11811
Description: Lemma for trirecip 11812. Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Hypothesis
Ref Expression
trireciplem.1  |-  F  =  ( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) )
Assertion
Ref Expression
trireciplem  |-  seq 1
(  +  ,  F
)  ~~>  1

Proof of Theorem trireciplem
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9684 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9399 . . . 4  |-  ( T. 
->  1  e.  ZZ )
3 1cnd 8088 . . . . . 6  |-  ( T. 
->  1  e.  CC )
4 divcnv 11808 . . . . . 6  |-  ( 1  e.  CC  ->  (
n  e.  NN  |->  ( 1  /  n ) )  ~~>  0 )
53, 4syl 14 . . . . 5  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  n
) )  ~~>  0 )
6 nnex 9042 . . . . . . . 8  |-  NN  e.  _V
76mptex 5810 . . . . . . 7  |-  ( n  e.  NN  |->  ( 1  /  ( n  + 
1 ) ) )  e.  _V
87a1i 9 . . . . . 6  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  (
n  +  1 ) ) )  e.  _V )
96mptex 5810 . . . . . . 7  |-  ( n  e.  NN  |->  ( 1  /  n ) )  e.  _V
109a1i 9 . . . . . 6  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  n
) )  e.  _V )
11 peano2nn 9048 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
1211adantl 277 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  (
k  +  1 )  e.  NN )
1312nnrecred 9083 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  /  ( k  +  1 ) )  e.  RR )
14 oveq2 5952 . . . . . . . . 9  |-  ( n  =  ( k  +  1 )  ->  (
1  /  n )  =  ( 1  / 
( k  +  1 ) ) )
15 eqid 2205 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( 1  /  n ) )  =  ( n  e.  NN  |->  ( 1  /  n ) )
1614, 15fvmptg 5655 . . . . . . . 8  |-  ( ( ( k  +  1 )  e.  NN  /\  ( 1  /  (
k  +  1 ) )  e.  RR )  ->  ( ( n  e.  NN  |->  ( 1  /  n ) ) `
 ( k  +  1 ) )  =  ( 1  /  (
k  +  1 ) ) )
1712, 13, 16syl2anc 411 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  n
) ) `  (
k  +  1 ) )  =  ( 1  /  ( k  +  1 ) ) )
18 simpr 110 . . . . . . . 8  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  NN )
19 oveq1 5951 . . . . . . . . . 10  |-  ( n  =  k  ->  (
n  +  1 )  =  ( k  +  1 ) )
2019oveq2d 5960 . . . . . . . . 9  |-  ( n  =  k  ->  (
1  /  ( n  +  1 ) )  =  ( 1  / 
( k  +  1 ) ) )
21 eqid 2205 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( 1  /  ( n  + 
1 ) ) )  =  ( n  e.  NN  |->  ( 1  / 
( n  +  1 ) ) )
2220, 21fvmptg 5655 . . . . . . . 8  |-  ( ( k  e.  NN  /\  ( 1  /  (
k  +  1 ) )  e.  RR )  ->  ( ( n  e.  NN  |->  ( 1  /  ( n  + 
1 ) ) ) `
 k )  =  ( 1  /  (
k  +  1 ) ) )
2318, 13, 22syl2anc 411 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  (
n  +  1 ) ) ) `  k
)  =  ( 1  /  ( k  +  1 ) ) )
2417, 23eqtr4d 2241 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  n
) ) `  (
k  +  1 ) )  =  ( ( n  e.  NN  |->  ( 1  /  ( n  +  1 ) ) ) `  k ) )
251, 2, 2, 8, 10, 24climshft2 11617 . . . . 5  |-  ( T. 
->  ( ( n  e.  NN  |->  ( 1  / 
( n  +  1 ) ) )  ~~>  0  <->  (
n  e.  NN  |->  ( 1  /  n ) )  ~~>  0 ) )
265, 25mpbird 167 . . . 4  |-  ( T. 
->  ( n  e.  NN  |->  ( 1  /  (
n  +  1 ) ) )  ~~>  0 )
27 seqex 10594 . . . . 5  |-  seq 1
(  +  ,  F
)  e.  _V
2827a1i 9 . . . 4  |-  ( T. 
->  seq 1 (  +  ,  F )  e. 
_V )
2913recnd 8101 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  /  ( k  +  1 ) )  e.  CC )
3023, 29eqeltrd 2282 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  (
n  +  1 ) ) ) `  k
)  e.  CC )
3123oveq2d 5960 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  (
1  -  ( ( n  e.  NN  |->  ( 1  /  ( n  +  1 ) ) ) `  k ) )  =  ( 1  -  ( 1  / 
( k  +  1 ) ) ) )
32 elfznn 10176 . . . . . . . . . . . 12  |-  ( j  e.  ( 1 ... k )  ->  j  e.  NN )
3332adantl 277 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  j  e.  NN )
3433nncnd 9050 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  j  e.  CC )
35 peano2cn 8207 . . . . . . . . . 10  |-  ( j  e.  CC  ->  (
j  +  1 )  e.  CC )
3634, 35syl 14 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  +  1 )  e.  CC )
37 peano2nn 9048 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  (
j  +  1 )  e.  NN )
3833, 37syl 14 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  +  1 )  e.  NN )
3933, 38nnmulcld 9085 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  x.  ( j  +  1 ) )  e.  NN )
4039nncnd 9050 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  x.  ( j  +  1 ) )  e.  CC )
4139nnap0d 9082 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  x.  ( j  +  1 ) ) #  0 )
4236, 34, 40, 41divsubdirapd 8903 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  -  j
)  /  ( j  x.  ( j  +  1 ) ) )  =  ( ( ( j  +  1 )  /  ( j  x.  ( j  +  1 ) ) )  -  ( j  /  (
j  x.  ( j  +  1 ) ) ) ) )
43 ax-1cn 8018 . . . . . . . . . 10  |-  1  e.  CC
44 pncan2 8279 . . . . . . . . . 10  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( ( j  +  1 )  -  j
)  =  1 )
4534, 43, 44sylancl 413 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  +  1 )  -  j )  =  1 )
4645oveq1d 5959 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  -  j
)  /  ( j  x.  ( j  +  1 ) ) )  =  ( 1  / 
( j  x.  (
j  +  1 ) ) ) )
4736mulridd 8089 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  +  1 )  x.  1 )  =  ( j  +  1 ) )
4836, 34mulcomd 8094 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  +  1 )  x.  j )  =  ( j  x.  ( j  +  1 ) ) )
4947, 48oveq12d 5962 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  x.  1 )  /  ( ( j  +  1 )  x.  j ) )  =  ( ( j  +  1 )  / 
( j  x.  (
j  +  1 ) ) ) )
50 1cnd 8088 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  1  e.  CC )
5133nnap0d 9082 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  j #  0 )
5238nnap0d 9082 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  +  1 ) #  0 )
5350, 34, 36, 51, 52divcanap5d 8890 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  x.  1 )  /  ( ( j  +  1 )  x.  j ) )  =  ( 1  / 
j ) )
5449, 53eqtr3d 2240 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  +  1 )  /  ( j  x.  ( j  +  1 ) ) )  =  ( 1  / 
j ) )
5534mulridd 8089 . . . . . . . . . . 11  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  x.  1 )  =  j )
5655oveq1d 5959 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  x.  1 )  /  ( j  x.  ( j  +  1 ) ) )  =  ( j  / 
( j  x.  (
j  +  1 ) ) ) )
5750, 36, 34, 52, 51divcanap5d 8890 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( j  x.  1 )  /  ( j  x.  ( j  +  1 ) ) )  =  ( 1  / 
( j  +  1 ) ) )
5856, 57eqtr3d 2240 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
j  /  ( j  x.  ( j  +  1 ) ) )  =  ( 1  / 
( j  +  1 ) ) )
5954, 58oveq12d 5962 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
( ( j  +  1 )  /  (
j  x.  ( j  +  1 ) ) )  -  ( j  /  ( j  x.  ( j  +  1 ) ) ) )  =  ( ( 1  /  j )  -  ( 1  /  (
j  +  1 ) ) ) )
6042, 46, 593eqtr3d 2246 . . . . . . 7  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( 1 ... k
) )  ->  (
1  /  ( j  x.  ( j  +  1 ) ) )  =  ( ( 1  /  j )  -  ( 1  /  (
j  +  1 ) ) ) )
6160sumeq2dv 11679 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  sum_ j  e.  ( 1 ... k
) ( 1  / 
( j  x.  (
j  +  1 ) ) )  =  sum_ j  e.  ( 1 ... k ) ( ( 1  /  j
)  -  ( 1  /  ( j  +  1 ) ) ) )
62 oveq2 5952 . . . . . . 7  |-  ( n  =  j  ->  (
1  /  n )  =  ( 1  / 
j ) )
63 oveq2 5952 . . . . . . 7  |-  ( n  =  ( j  +  1 )  ->  (
1  /  n )  =  ( 1  / 
( j  +  1 ) ) )
64 oveq2 5952 . . . . . . . 8  |-  ( n  =  1  ->  (
1  /  n )  =  ( 1  / 
1 ) )
65 1div1e1 8777 . . . . . . . 8  |-  ( 1  /  1 )  =  1
6664, 65eqtrdi 2254 . . . . . . 7  |-  ( n  =  1  ->  (
1  /  n )  =  1 )
67 nnz 9391 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  ZZ )
6867adantl 277 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  ZZ )
6912, 1eleqtrdi 2298 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  (
k  +  1 )  e.  ( ZZ>= `  1
) )
70 elfznn 10176 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( k  +  1 ) )  ->  n  e.  NN )
7170adantl 277 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  n  e.  ( 1 ... (
k  +  1 ) ) )  ->  n  e.  NN )
7271nnrecred 9083 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  n  e.  ( 1 ... (
k  +  1 ) ) )  ->  (
1  /  n )  e.  RR )
7372recnd 8101 . . . . . . 7  |-  ( ( ( T.  /\  k  e.  NN )  /\  n  e.  ( 1 ... (
k  +  1 ) ) )  ->  (
1  /  n )  e.  CC )
7462, 63, 66, 14, 68, 69, 73telfsum 11779 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  sum_ j  e.  ( 1 ... k
) ( ( 1  /  j )  -  ( 1  /  (
j  +  1 ) ) )  =  ( 1  -  ( 1  /  ( k  +  1 ) ) ) )
7561, 74eqtrd 2238 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  sum_ j  e.  ( 1 ... k
) ( 1  / 
( j  x.  (
j  +  1 ) ) )  =  ( 1  -  ( 1  /  ( k  +  1 ) ) ) )
76 elnnuz 9685 . . . . . . . . 9  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
7776biimpri 133 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  NN )
7877adantl 277 . . . . . . 7  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  NN )
79 eluzelz 9657 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  ZZ )
8079adantl 277 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  ZZ )
8180zcnd 9496 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  j  e.  CC )
8281, 35syl 14 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( j  +  1 )  e.  CC )
8381, 82mulcld 8093 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( j  x.  ( j  +  1 ) )  e.  CC )
8478nnap0d 9082 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  j #  0
)
8578, 37syl 14 . . . . . . . . . 10  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( j  +  1 )  e.  NN )
8685nnap0d 9082 . . . . . . . . 9  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( j  +  1 ) #  0 )
8781, 82, 84, 86mulap0d 8731 . . . . . . . 8  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( j  x.  ( j  +  1 ) ) #  0 )
8883, 87recclapd 8854 . . . . . . 7  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( 1  /  ( j  x.  ( j  +  1 ) ) )  e.  CC )
89 id 19 . . . . . . . . . 10  |-  ( n  =  j  ->  n  =  j )
90 oveq1 5951 . . . . . . . . . 10  |-  ( n  =  j  ->  (
n  +  1 )  =  ( j  +  1 ) )
9189, 90oveq12d 5962 . . . . . . . . 9  |-  ( n  =  j  ->  (
n  x.  ( n  +  1 ) )  =  ( j  x.  ( j  +  1 ) ) )
9291oveq2d 5960 . . . . . . . 8  |-  ( n  =  j  ->  (
1  /  ( n  x.  ( n  + 
1 ) ) )  =  ( 1  / 
( j  x.  (
j  +  1 ) ) ) )
93 trireciplem.1 . . . . . . . 8  |-  F  =  ( n  e.  NN  |->  ( 1  /  (
n  x.  ( n  +  1 ) ) ) )
9492, 93fvmptg 5655 . . . . . . 7  |-  ( ( j  e.  NN  /\  ( 1  /  (
j  x.  ( j  +  1 ) ) )  e.  CC )  ->  ( F `  j )  =  ( 1  /  ( j  x.  ( j  +  1 ) ) ) )
9578, 88, 94syl2anc 411 . . . . . 6  |-  ( ( ( T.  /\  k  e.  NN )  /\  j  e.  ( ZZ>= `  1 )
)  ->  ( F `  j )  =  ( 1  /  ( j  x.  ( j  +  1 ) ) ) )
9618, 1eleqtrdi 2298 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  ( ZZ>= `  1 )
)
9795, 96, 88fsum3ser 11708 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  sum_ j  e.  ( 1 ... k
) ( 1  / 
( j  x.  (
j  +  1 ) ) )  =  (  seq 1 (  +  ,  F ) `  k ) )
9831, 75, 973eqtr2rd 2245 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  F ) `  k
)  =  ( 1  -  ( ( n  e.  NN  |->  ( 1  /  ( n  + 
1 ) ) ) `
 k ) ) )
991, 2, 26, 3, 28, 30, 98climsubc2 11644 . . 3  |-  ( T. 
->  seq 1 (  +  ,  F )  ~~>  ( 1  -  0 ) )
10099mptru 1382 . 2  |-  seq 1
(  +  ,  F
)  ~~>  ( 1  -  0 )
101 1m0e1 9149 . 2  |-  ( 1  -  0 )  =  1
102100, 101breqtri 4069 1  |-  seq 1
(  +  ,  F
)  ~~>  1
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   T. wtru 1374    e. wcel 2176   _Vcvv 2772   class class class wbr 4044    |-> cmpt 4105   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    x. cmul 7930    - cmin 8243    / cdiv 8745   NNcn 9036   ZZcz 9372   ZZ>=cuz 9648   ...cfz 10130    seqcseq 10592    ~~> cli 11589   sum_csu 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-shft 11126  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665
This theorem is referenced by:  trirecip  11812
  Copyright terms: Public domain W3C validator