| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abssinper | Unicode version | ||
| Description: The absolute value of
sine has period |
| Ref | Expression |
|---|---|
| abssinper |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9376 |
. . . . . . . . . 10
| |
| 2 | halfcl 9262 |
. . . . . . . . . . . 12
| |
| 3 | 2cn 9106 |
. . . . . . . . . . . . 13
| |
| 4 | picn 15201 |
. . . . . . . . . . . . 13
| |
| 5 | mulass 8055 |
. . . . . . . . . . . . 13
| |
| 6 | 3, 4, 5 | mp3an23 1341 |
. . . . . . . . . . . 12
|
| 7 | 2, 6 | syl 14 |
. . . . . . . . . . 11
|
| 8 | 2ap0 9128 |
. . . . . . . . . . . . 13
| |
| 9 | divcanap1 8753 |
. . . . . . . . . . . . 13
| |
| 10 | 3, 8, 9 | mp3an23 1341 |
. . . . . . . . . . . 12
|
| 11 | 10 | oveq1d 5958 |
. . . . . . . . . . 11
|
| 12 | 7, 11 | eqtr3d 2239 |
. . . . . . . . . 10
|
| 13 | 1, 12 | syl 14 |
. . . . . . . . 9
|
| 14 | 13 | adantl 277 |
. . . . . . . 8
|
| 15 | 14 | oveq2d 5959 |
. . . . . . 7
|
| 16 | 15 | fveq2d 5579 |
. . . . . 6
|
| 17 | 16 | eqcomd 2210 |
. . . . 5
|
| 18 | 17 | adantr 276 |
. . . 4
|
| 19 | sinper 15223 |
. . . . 5
| |
| 20 | 19 | adantlr 477 |
. . . 4
|
| 21 | 18, 20 | eqtrd 2237 |
. . 3
|
| 22 | 21 | fveq2d 5579 |
. 2
|
| 23 | peano2cn 8206 |
. . . . . . . . . . . 12
| |
| 24 | halfcl 9262 |
. . . . . . . . . . . 12
| |
| 25 | 23, 24 | syl 14 |
. . . . . . . . . . 11
|
| 26 | 3, 4 | mulcli 8076 |
. . . . . . . . . . 11
|
| 27 | mulcl 8051 |
. . . . . . . . . . 11
| |
| 28 | 25, 26, 27 | sylancl 413 |
. . . . . . . . . 10
|
| 29 | subadd23 8283 |
. . . . . . . . . . 11
| |
| 30 | 4, 29 | mp3an2 1337 |
. . . . . . . . . 10
|
| 31 | 28, 30 | sylan2 286 |
. . . . . . . . 9
|
| 32 | divcanap1 8753 |
. . . . . . . . . . . . . . . . . . 19
| |
| 33 | 3, 8, 32 | mp3an23 1341 |
. . . . . . . . . . . . . . . . . 18
|
| 34 | 23, 33 | syl 14 |
. . . . . . . . . . . . . . . . 17
|
| 35 | 34 | oveq1d 5958 |
. . . . . . . . . . . . . . . 16
|
| 36 | ax-1cn 8017 |
. . . . . . . . . . . . . . . . 17
| |
| 37 | adddir 8062 |
. . . . . . . . . . . . . . . . 17
| |
| 38 | 36, 4, 37 | mp3an23 1341 |
. . . . . . . . . . . . . . . 16
|
| 39 | 35, 38 | eqtrd 2237 |
. . . . . . . . . . . . . . 15
|
| 40 | 4 | mullidi 8074 |
. . . . . . . . . . . . . . . 16
|
| 41 | 40 | oveq2i 5954 |
. . . . . . . . . . . . . . 15
|
| 42 | 39, 41 | eqtr2di 2254 |
. . . . . . . . . . . . . 14
|
| 43 | mulass 8055 |
. . . . . . . . . . . . . . . 16
| |
| 44 | 3, 4, 43 | mp3an23 1341 |
. . . . . . . . . . . . . . 15
|
| 45 | 25, 44 | syl 14 |
. . . . . . . . . . . . . 14
|
| 46 | 42, 45 | eqtr2d 2238 |
. . . . . . . . . . . . 13
|
| 47 | 46 | oveq1d 5958 |
. . . . . . . . . . . 12
|
| 48 | mulcl 8051 |
. . . . . . . . . . . . . 14
| |
| 49 | 4, 48 | mpan2 425 |
. . . . . . . . . . . . 13
|
| 50 | pncan 8277 |
. . . . . . . . . . . . 13
| |
| 51 | 49, 4, 50 | sylancl 413 |
. . . . . . . . . . . 12
|
| 52 | 47, 51 | eqtrd 2237 |
. . . . . . . . . . 11
|
| 53 | 52 | adantl 277 |
. . . . . . . . . 10
|
| 54 | 53 | oveq2d 5959 |
. . . . . . . . 9
|
| 55 | 31, 54 | eqtr2d 2238 |
. . . . . . . 8
|
| 56 | 1, 55 | sylan2 286 |
. . . . . . 7
|
| 57 | 56 | fveq2d 5579 |
. . . . . 6
|
| 58 | 57 | adantr 276 |
. . . . 5
|
| 59 | subcl 8270 |
. . . . . . . . 9
| |
| 60 | 4, 59 | mpan2 425 |
. . . . . . . 8
|
| 61 | sinper 15223 |
. . . . . . . 8
| |
| 62 | 60, 61 | sylan 283 |
. . . . . . 7
|
| 63 | 62 | adantlr 477 |
. . . . . 6
|
| 64 | sinmpi 15229 |
. . . . . . 7
| |
| 65 | 64 | ad2antrr 488 |
. . . . . 6
|
| 66 | 63, 65 | eqtrd 2237 |
. . . . 5
|
| 67 | 58, 66 | eqtrd 2237 |
. . . 4
|
| 68 | 67 | fveq2d 5579 |
. . 3
|
| 69 | sincl 11959 |
. . . . 5
| |
| 70 | 69 | absnegd 11442 |
. . . 4
|
| 71 | 70 | ad2antrr 488 |
. . 3
|
| 72 | 68, 71 | eqtrd 2237 |
. 2
|
| 73 | zeo 9477 |
. . 3
| |
| 74 | 73 | adantl 277 |
. 2
|
| 75 | 22, 72, 74 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 ax-pre-suploc 8045 ax-addf 8046 ax-mulf 8047 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-disj 4021 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-of 6157 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-map 6736 df-pm 6737 df-en 6827 df-dom 6828 df-fin 6829 df-sup 7085 df-inf 7086 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-xneg 9893 df-xadd 9894 df-ioo 10013 df-ioc 10014 df-ico 10015 df-icc 10016 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-fac 10869 df-bc 10891 df-ihash 10919 df-shft 11068 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-clim 11532 df-sumdc 11607 df-ef 11901 df-sin 11903 df-cos 11904 df-pi 11906 df-rest 13015 df-topgen 13034 df-psmet 14247 df-xmet 14248 df-met 14249 df-bl 14250 df-mopn 14251 df-top 14412 df-topon 14425 df-bases 14457 df-ntr 14510 df-cn 14602 df-cnp 14603 df-tx 14667 df-cncf 14985 df-limced 15070 df-dvap 15071 |
| This theorem is referenced by: sinkpi 15261 |
| Copyright terms: Public domain | W3C validator |