| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abssinper | Unicode version | ||
| Description: The absolute value of
sine has period |
| Ref | Expression |
|---|---|
| abssinper |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9397 |
. . . . . . . . . 10
| |
| 2 | halfcl 9283 |
. . . . . . . . . . . 12
| |
| 3 | 2cn 9127 |
. . . . . . . . . . . . 13
| |
| 4 | picn 15334 |
. . . . . . . . . . . . 13
| |
| 5 | mulass 8076 |
. . . . . . . . . . . . 13
| |
| 6 | 3, 4, 5 | mp3an23 1342 |
. . . . . . . . . . . 12
|
| 7 | 2, 6 | syl 14 |
. . . . . . . . . . 11
|
| 8 | 2ap0 9149 |
. . . . . . . . . . . . 13
| |
| 9 | divcanap1 8774 |
. . . . . . . . . . . . 13
| |
| 10 | 3, 8, 9 | mp3an23 1342 |
. . . . . . . . . . . 12
|
| 11 | 10 | oveq1d 5972 |
. . . . . . . . . . 11
|
| 12 | 7, 11 | eqtr3d 2241 |
. . . . . . . . . 10
|
| 13 | 1, 12 | syl 14 |
. . . . . . . . 9
|
| 14 | 13 | adantl 277 |
. . . . . . . 8
|
| 15 | 14 | oveq2d 5973 |
. . . . . . 7
|
| 16 | 15 | fveq2d 5593 |
. . . . . 6
|
| 17 | 16 | eqcomd 2212 |
. . . . 5
|
| 18 | 17 | adantr 276 |
. . . 4
|
| 19 | sinper 15356 |
. . . . 5
| |
| 20 | 19 | adantlr 477 |
. . . 4
|
| 21 | 18, 20 | eqtrd 2239 |
. . 3
|
| 22 | 21 | fveq2d 5593 |
. 2
|
| 23 | peano2cn 8227 |
. . . . . . . . . . . 12
| |
| 24 | halfcl 9283 |
. . . . . . . . . . . 12
| |
| 25 | 23, 24 | syl 14 |
. . . . . . . . . . 11
|
| 26 | 3, 4 | mulcli 8097 |
. . . . . . . . . . 11
|
| 27 | mulcl 8072 |
. . . . . . . . . . 11
| |
| 28 | 25, 26, 27 | sylancl 413 |
. . . . . . . . . 10
|
| 29 | subadd23 8304 |
. . . . . . . . . . 11
| |
| 30 | 4, 29 | mp3an2 1338 |
. . . . . . . . . 10
|
| 31 | 28, 30 | sylan2 286 |
. . . . . . . . 9
|
| 32 | divcanap1 8774 |
. . . . . . . . . . . . . . . . . . 19
| |
| 33 | 3, 8, 32 | mp3an23 1342 |
. . . . . . . . . . . . . . . . . 18
|
| 34 | 23, 33 | syl 14 |
. . . . . . . . . . . . . . . . 17
|
| 35 | 34 | oveq1d 5972 |
. . . . . . . . . . . . . . . 16
|
| 36 | ax-1cn 8038 |
. . . . . . . . . . . . . . . . 17
| |
| 37 | adddir 8083 |
. . . . . . . . . . . . . . . . 17
| |
| 38 | 36, 4, 37 | mp3an23 1342 |
. . . . . . . . . . . . . . . 16
|
| 39 | 35, 38 | eqtrd 2239 |
. . . . . . . . . . . . . . 15
|
| 40 | 4 | mullidi 8095 |
. . . . . . . . . . . . . . . 16
|
| 41 | 40 | oveq2i 5968 |
. . . . . . . . . . . . . . 15
|
| 42 | 39, 41 | eqtr2di 2256 |
. . . . . . . . . . . . . 14
|
| 43 | mulass 8076 |
. . . . . . . . . . . . . . . 16
| |
| 44 | 3, 4, 43 | mp3an23 1342 |
. . . . . . . . . . . . . . 15
|
| 45 | 25, 44 | syl 14 |
. . . . . . . . . . . . . 14
|
| 46 | 42, 45 | eqtr2d 2240 |
. . . . . . . . . . . . 13
|
| 47 | 46 | oveq1d 5972 |
. . . . . . . . . . . 12
|
| 48 | mulcl 8072 |
. . . . . . . . . . . . . 14
| |
| 49 | 4, 48 | mpan2 425 |
. . . . . . . . . . . . 13
|
| 50 | pncan 8298 |
. . . . . . . . . . . . 13
| |
| 51 | 49, 4, 50 | sylancl 413 |
. . . . . . . . . . . 12
|
| 52 | 47, 51 | eqtrd 2239 |
. . . . . . . . . . 11
|
| 53 | 52 | adantl 277 |
. . . . . . . . . 10
|
| 54 | 53 | oveq2d 5973 |
. . . . . . . . 9
|
| 55 | 31, 54 | eqtr2d 2240 |
. . . . . . . 8
|
| 56 | 1, 55 | sylan2 286 |
. . . . . . 7
|
| 57 | 56 | fveq2d 5593 |
. . . . . 6
|
| 58 | 57 | adantr 276 |
. . . . 5
|
| 59 | subcl 8291 |
. . . . . . . . 9
| |
| 60 | 4, 59 | mpan2 425 |
. . . . . . . 8
|
| 61 | sinper 15356 |
. . . . . . . 8
| |
| 62 | 60, 61 | sylan 283 |
. . . . . . 7
|
| 63 | 62 | adantlr 477 |
. . . . . 6
|
| 64 | sinmpi 15362 |
. . . . . . 7
| |
| 65 | 64 | ad2antrr 488 |
. . . . . 6
|
| 66 | 63, 65 | eqtrd 2239 |
. . . . 5
|
| 67 | 58, 66 | eqtrd 2239 |
. . . 4
|
| 68 | 67 | fveq2d 5593 |
. . 3
|
| 69 | sincl 12092 |
. . . . 5
| |
| 70 | 69 | absnegd 11575 |
. . . 4
|
| 71 | 70 | ad2antrr 488 |
. . 3
|
| 72 | 68, 71 | eqtrd 2239 |
. 2
|
| 73 | zeo 9498 |
. . 3
| |
| 74 | 73 | adantl 277 |
. 2
|
| 75 | 22, 72, 74 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 ax-pre-suploc 8066 ax-addf 8067 ax-mulf 8068 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-disj 4028 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-isom 5289 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-of 6171 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-frec 6490 df-1o 6515 df-oadd 6519 df-er 6633 df-map 6750 df-pm 6751 df-en 6841 df-dom 6842 df-fin 6843 df-sup 7101 df-inf 7102 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-9 9122 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-xneg 9914 df-xadd 9915 df-ioo 10034 df-ioc 10035 df-ico 10036 df-icc 10037 df-fz 10151 df-fzo 10285 df-seqfrec 10615 df-exp 10706 df-fac 10893 df-bc 10915 df-ihash 10943 df-shft 11201 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-clim 11665 df-sumdc 11740 df-ef 12034 df-sin 12036 df-cos 12037 df-pi 12039 df-rest 13148 df-topgen 13167 df-psmet 14380 df-xmet 14381 df-met 14382 df-bl 14383 df-mopn 14384 df-top 14545 df-topon 14558 df-bases 14590 df-ntr 14643 df-cn 14735 df-cnp 14736 df-tx 14800 df-cncf 15118 df-limced 15203 df-dvap 15204 |
| This theorem is referenced by: sinkpi 15394 |
| Copyright terms: Public domain | W3C validator |