ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssinper Unicode version

Theorem abssinper 12949
Description: The absolute value of sine has period  pi. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
abssinper  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )

Proof of Theorem abssinper
StepHypRef Expression
1 zcn 9071 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  K  e.  CC )
2 halfcl 8958 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  ( K  /  2 )  e.  CC )
3 2cn 8803 . . . . . . . . . . . . 13  |-  2  e.  CC
4 picn 12890 . . . . . . . . . . . . 13  |-  pi  e.  CC
5 mulass 7763 . . . . . . . . . . . . 13  |-  ( ( ( K  /  2
)  e.  CC  /\  2  e.  CC  /\  pi  e.  CC )  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) )
63, 4, 5mp3an23 1307 . . . . . . . . . . . 12  |-  ( ( K  /  2 )  e.  CC  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) )
72, 6syl 14 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) )
8 2ap0 8825 . . . . . . . . . . . . 13  |-  2 #  0
9 divcanap1 8453 . . . . . . . . . . . . 13  |-  ( ( K  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  (
( K  /  2
)  x.  2 )  =  K )
103, 8, 9mp3an23 1307 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  (
( K  /  2
)  x.  2 )  =  K )
1110oveq1d 5789 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( K  x.  pi ) )
127, 11eqtr3d 2174 . . . . . . . . . 10  |-  ( K  e.  CC  ->  (
( K  /  2
)  x.  ( 2  x.  pi ) )  =  ( K  x.  pi ) )
131, 12syl 14 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  (
( K  /  2
)  x.  ( 2  x.  pi ) )  =  ( K  x.  pi ) )
1413adantl 275 . . . . . . . 8  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( ( K  / 
2 )  x.  (
2  x.  pi ) )  =  ( K  x.  pi ) )
1514oveq2d 5790 . . . . . . 7  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( A  +  ( ( K  /  2
)  x.  ( 2  x.  pi ) ) )  =  ( A  +  ( K  x.  pi ) ) )
1615fveq2d 5425 . . . . . 6  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  +  ( K  x.  pi ) ) ) )
1716eqcomd 2145 . . . . 5  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
1817adantr 274 . . . 4  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
19 sinper 12912 . . . . 5  |-  ( ( A  e.  CC  /\  ( K  /  2
)  e.  ZZ )  ->  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  A
) )
2019adantlr 468 . . . 4  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  A
) )
2118, 20eqtrd 2172 . . 3  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  A
) )
2221fveq2d 5425 . 2  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
23 peano2cn 7909 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  ( K  +  1 )  e.  CC )
24 halfcl 8958 . . . . . . . . . . . 12  |-  ( ( K  +  1 )  e.  CC  ->  (
( K  +  1 )  /  2 )  e.  CC )
2523, 24syl 14 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( K  +  1 )  /  2 )  e.  CC )
263, 4mulcli 7783 . . . . . . . . . . 11  |-  ( 2  x.  pi )  e.  CC
27 mulcl 7759 . . . . . . . . . . 11  |-  ( ( ( ( K  + 
1 )  /  2
)  e.  CC  /\  ( 2  x.  pi )  e.  CC )  ->  ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  e.  CC )
2825, 26, 27sylancl 409 . . . . . . . . . 10  |-  ( K  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  e.  CC )
29 subadd23 7986 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  pi  e.  CC  /\  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  e.  CC )  -> 
( ( A  -  pi )  +  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) ) )  =  ( A  +  ( ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) )  -  pi ) ) )
304, 29mp3an2 1303 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  e.  CC )  ->  ( ( A  -  pi )  +  ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) ) )  =  ( A  +  ( ( ( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  -  pi ) ) )
3128, 30sylan2 284 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( ( A  -  pi )  +  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) ) )  =  ( A  +  ( ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) )  -  pi ) ) )
32 divcanap1 8453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  +  1 )  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  (
( ( K  + 
1 )  /  2
)  x.  2 )  =  ( K  + 
1 ) )
333, 8, 32mp3an23 1307 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  +  1 )  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  2 )  =  ( K  + 
1 ) )
3423, 33syl 14 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  2 )  =  ( K  + 
1 ) )
3534oveq1d 5789 . . . . . . . . . . . . . . . 16  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  +  1 )  x.  pi ) )
36 ax-1cn 7725 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
37 adddir 7769 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  CC  /\  1  e.  CC  /\  pi  e.  CC )  ->  (
( K  +  1 )  x.  pi )  =  ( ( K  x.  pi )  +  ( 1  x.  pi ) ) )
3836, 4, 37mp3an23 1307 . . . . . . . . . . . . . . . 16  |-  ( K  e.  CC  ->  (
( K  +  1 )  x.  pi )  =  ( ( K  x.  pi )  +  ( 1  x.  pi ) ) )
3935, 38eqtrd 2172 . . . . . . . . . . . . . . 15  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  x.  pi )  +  ( 1  x.  pi ) ) )
404mulid2i 7781 . . . . . . . . . . . . . . . 16  |-  ( 1  x.  pi )  =  pi
4140oveq2i 5785 . . . . . . . . . . . . . . 15  |-  ( ( K  x.  pi )  +  ( 1  x.  pi ) )  =  ( ( K  x.  pi )  +  pi )
4239, 41syl6req 2189 . . . . . . . . . . . . . 14  |-  ( K  e.  CC  ->  (
( K  x.  pi )  +  pi )  =  ( ( ( ( K  +  1 )  /  2 )  x.  2 )  x.  pi ) )
43 mulass 7763 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  + 
1 )  /  2
)  e.  CC  /\  2  e.  CC  /\  pi  e.  CC )  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) )
443, 4, 43mp3an23 1307 . . . . . . . . . . . . . . 15  |-  ( ( ( K  +  1 )  /  2 )  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) )
4525, 44syl 14 . . . . . . . . . . . . . 14  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) )
4642, 45eqtr2d 2173 . . . . . . . . . . . . 13  |-  ( K  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  =  ( ( K  x.  pi )  +  pi ) )
4746oveq1d 5789 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  -  pi )  =  ( ( ( K  x.  pi )  +  pi )  -  pi ) )
48 mulcl 7759 . . . . . . . . . . . . . 14  |-  ( ( K  e.  CC  /\  pi  e.  CC )  -> 
( K  x.  pi )  e.  CC )
494, 48mpan2 421 . . . . . . . . . . . . 13  |-  ( K  e.  CC  ->  ( K  x.  pi )  e.  CC )
50 pncan 7980 . . . . . . . . . . . . 13  |-  ( ( ( K  x.  pi )  e.  CC  /\  pi  e.  CC )  ->  (
( ( K  x.  pi )  +  pi )  -  pi )  =  ( K  x.  pi ) )
5149, 4, 50sylancl 409 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  (
( ( K  x.  pi )  +  pi )  -  pi )  =  ( K  x.  pi ) )
5247, 51eqtrd 2172 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  -  pi )  =  ( K  x.  pi ) )
5352adantl 275 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) )  -  pi )  =  ( K  x.  pi ) )
5453oveq2d 5790 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( A  +  ( ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  -  pi ) )  =  ( A  +  ( K  x.  pi ) ) )
5531, 54eqtr2d 2173 . . . . . . . 8  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( A  +  ( K  x.  pi ) )  =  ( ( A  -  pi )  +  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )
561, 55sylan2 284 . . . . . . 7  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( A  +  ( K  x.  pi ) )  =  ( ( A  -  pi )  +  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )
5756fveq2d 5425 . . . . . 6  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
5857adantr 274 . . . . 5  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
59 subcl 7973 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  pi  e.  CC )  -> 
( A  -  pi )  e.  CC )
604, 59mpan2 421 . . . . . . . 8  |-  ( A  e.  CC  ->  ( A  -  pi )  e.  CC )
61 sinper 12912 . . . . . . . 8  |-  ( ( ( A  -  pi )  e.  CC  /\  (
( K  +  1 )  /  2 )  e.  ZZ )  -> 
( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  -  pi ) ) )
6260, 61sylan 281 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( K  + 
1 )  /  2
)  e.  ZZ )  ->  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  -  pi ) ) )
6362adantlr 468 . . . . . 6  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  -  pi ) ) )
64 sinmpi 12918 . . . . . . 7  |-  ( A  e.  CC  ->  ( sin `  ( A  -  pi ) )  =  -u ( sin `  A ) )
6564ad2antrr 479 . . . . . 6  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  -  pi )
)  =  -u ( sin `  A ) )
6663, 65eqtrd 2172 . . . . 5  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  -u ( sin `  A ) )
6758, 66eqtrd 2172 . . . 4  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  -u ( sin `  A
) )
6867fveq2d 5425 . . 3  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  -u ( sin `  A ) ) )
69 sincl 11424 . . . . 5  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
7069absnegd 10973 . . . 4  |-  ( A  e.  CC  ->  ( abs `  -u ( sin `  A
) )  =  ( abs `  ( sin `  A ) ) )
7170ad2antrr 479 . . 3  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( abs `  -u ( sin `  A ) )  =  ( abs `  ( sin `  A ) ) )
7268, 71eqtrd 2172 . 2  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
73 zeo 9168 . . 3  |-  ( K  e.  ZZ  ->  (
( K  /  2
)  e.  ZZ  \/  ( ( K  + 
1 )  /  2
)  e.  ZZ ) )
7473adantl 275 . 2  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( ( K  / 
2 )  e.  ZZ  \/  ( ( K  + 
1 )  /  2
)  e.  ZZ ) )
7522, 72, 74mpjaodan 787 1  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 697    = wceq 1331    e. wcel 1480   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7630   0cc0 7632   1c1 7633    + caddc 7635    x. cmul 7637    - cmin 7945   -ucneg 7946   # cap 8355    / cdiv 8444   2c2 8783   ZZcz 9066   abscabs 10781   sincsin 11362   picpi 11365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750  ax-arch 7751  ax-caucvg 7752  ax-pre-suploc 7753  ax-addf 7754  ax-mulf 7755
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-map 6544  df-pm 6545  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-inf 6872  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-5 8794  df-6 8795  df-7 8796  df-8 8797  df-9 8798  df-n0 8990  df-z 9067  df-uz 9339  df-q 9424  df-rp 9454  df-xneg 9571  df-xadd 9572  df-ioo 9687  df-ioc 9688  df-ico 9689  df-icc 9690  df-fz 9803  df-fzo 9932  df-seqfrec 10231  df-exp 10305  df-fac 10484  df-bc 10506  df-ihash 10534  df-shft 10599  df-cj 10626  df-re 10627  df-im 10628  df-rsqrt 10782  df-abs 10783  df-clim 11060  df-sumdc 11135  df-ef 11366  df-sin 11368  df-cos 11369  df-pi 11371  df-rest 12136  df-topgen 12155  df-psmet 12170  df-xmet 12171  df-met 12172  df-bl 12173  df-mopn 12174  df-top 12179  df-topon 12192  df-bases 12224  df-ntr 12279  df-cn 12371  df-cnp 12372  df-tx 12436  df-cncf 12741  df-limced 12808  df-dvap 12809
This theorem is referenced by:  sinkpi  12950
  Copyright terms: Public domain W3C validator