ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssinper Unicode version

Theorem abssinper 14306
Description: The absolute value of sine has period  pi. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
abssinper  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )

Proof of Theorem abssinper
StepHypRef Expression
1 zcn 9260 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  K  e.  CC )
2 halfcl 9147 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  ( K  /  2 )  e.  CC )
3 2cn 8992 . . . . . . . . . . . . 13  |-  2  e.  CC
4 picn 14247 . . . . . . . . . . . . 13  |-  pi  e.  CC
5 mulass 7944 . . . . . . . . . . . . 13  |-  ( ( ( K  /  2
)  e.  CC  /\  2  e.  CC  /\  pi  e.  CC )  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) )
63, 4, 5mp3an23 1329 . . . . . . . . . . . 12  |-  ( ( K  /  2 )  e.  CC  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) )
72, 6syl 14 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) )
8 2ap0 9014 . . . . . . . . . . . . 13  |-  2 #  0
9 divcanap1 8640 . . . . . . . . . . . . 13  |-  ( ( K  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  (
( K  /  2
)  x.  2 )  =  K )
103, 8, 9mp3an23 1329 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  (
( K  /  2
)  x.  2 )  =  K )
1110oveq1d 5892 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( K  x.  pi ) )
127, 11eqtr3d 2212 . . . . . . . . . 10  |-  ( K  e.  CC  ->  (
( K  /  2
)  x.  ( 2  x.  pi ) )  =  ( K  x.  pi ) )
131, 12syl 14 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  (
( K  /  2
)  x.  ( 2  x.  pi ) )  =  ( K  x.  pi ) )
1413adantl 277 . . . . . . . 8  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( ( K  / 
2 )  x.  (
2  x.  pi ) )  =  ( K  x.  pi ) )
1514oveq2d 5893 . . . . . . 7  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( A  +  ( ( K  /  2
)  x.  ( 2  x.  pi ) ) )  =  ( A  +  ( K  x.  pi ) ) )
1615fveq2d 5521 . . . . . 6  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  +  ( K  x.  pi ) ) ) )
1716eqcomd 2183 . . . . 5  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
1817adantr 276 . . . 4  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
19 sinper 14269 . . . . 5  |-  ( ( A  e.  CC  /\  ( K  /  2
)  e.  ZZ )  ->  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  A
) )
2019adantlr 477 . . . 4  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  A
) )
2118, 20eqtrd 2210 . . 3  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  A
) )
2221fveq2d 5521 . 2  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
23 peano2cn 8094 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  ( K  +  1 )  e.  CC )
24 halfcl 9147 . . . . . . . . . . . 12  |-  ( ( K  +  1 )  e.  CC  ->  (
( K  +  1 )  /  2 )  e.  CC )
2523, 24syl 14 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( K  +  1 )  /  2 )  e.  CC )
263, 4mulcli 7964 . . . . . . . . . . 11  |-  ( 2  x.  pi )  e.  CC
27 mulcl 7940 . . . . . . . . . . 11  |-  ( ( ( ( K  + 
1 )  /  2
)  e.  CC  /\  ( 2  x.  pi )  e.  CC )  ->  ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  e.  CC )
2825, 26, 27sylancl 413 . . . . . . . . . 10  |-  ( K  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  e.  CC )
29 subadd23 8171 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  pi  e.  CC  /\  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  e.  CC )  -> 
( ( A  -  pi )  +  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) ) )  =  ( A  +  ( ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) )  -  pi ) ) )
304, 29mp3an2 1325 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  e.  CC )  ->  ( ( A  -  pi )  +  ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) ) )  =  ( A  +  ( ( ( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  -  pi ) ) )
3128, 30sylan2 286 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( ( A  -  pi )  +  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) ) )  =  ( A  +  ( ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) )  -  pi ) ) )
32 divcanap1 8640 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  +  1 )  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  (
( ( K  + 
1 )  /  2
)  x.  2 )  =  ( K  + 
1 ) )
333, 8, 32mp3an23 1329 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  +  1 )  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  2 )  =  ( K  + 
1 ) )
3423, 33syl 14 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  2 )  =  ( K  + 
1 ) )
3534oveq1d 5892 . . . . . . . . . . . . . . . 16  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  +  1 )  x.  pi ) )
36 ax-1cn 7906 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
37 adddir 7950 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  CC  /\  1  e.  CC  /\  pi  e.  CC )  ->  (
( K  +  1 )  x.  pi )  =  ( ( K  x.  pi )  +  ( 1  x.  pi ) ) )
3836, 4, 37mp3an23 1329 . . . . . . . . . . . . . . . 16  |-  ( K  e.  CC  ->  (
( K  +  1 )  x.  pi )  =  ( ( K  x.  pi )  +  ( 1  x.  pi ) ) )
3935, 38eqtrd 2210 . . . . . . . . . . . . . . 15  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  x.  pi )  +  ( 1  x.  pi ) ) )
404mullidi 7962 . . . . . . . . . . . . . . . 16  |-  ( 1  x.  pi )  =  pi
4140oveq2i 5888 . . . . . . . . . . . . . . 15  |-  ( ( K  x.  pi )  +  ( 1  x.  pi ) )  =  ( ( K  x.  pi )  +  pi )
4239, 41eqtr2di 2227 . . . . . . . . . . . . . 14  |-  ( K  e.  CC  ->  (
( K  x.  pi )  +  pi )  =  ( ( ( ( K  +  1 )  /  2 )  x.  2 )  x.  pi ) )
43 mulass 7944 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  + 
1 )  /  2
)  e.  CC  /\  2  e.  CC  /\  pi  e.  CC )  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) )
443, 4, 43mp3an23 1329 . . . . . . . . . . . . . . 15  |-  ( ( ( K  +  1 )  /  2 )  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) )
4525, 44syl 14 . . . . . . . . . . . . . 14  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) )
4642, 45eqtr2d 2211 . . . . . . . . . . . . 13  |-  ( K  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  =  ( ( K  x.  pi )  +  pi ) )
4746oveq1d 5892 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  -  pi )  =  ( ( ( K  x.  pi )  +  pi )  -  pi ) )
48 mulcl 7940 . . . . . . . . . . . . . 14  |-  ( ( K  e.  CC  /\  pi  e.  CC )  -> 
( K  x.  pi )  e.  CC )
494, 48mpan2 425 . . . . . . . . . . . . 13  |-  ( K  e.  CC  ->  ( K  x.  pi )  e.  CC )
50 pncan 8165 . . . . . . . . . . . . 13  |-  ( ( ( K  x.  pi )  e.  CC  /\  pi  e.  CC )  ->  (
( ( K  x.  pi )  +  pi )  -  pi )  =  ( K  x.  pi ) )
5149, 4, 50sylancl 413 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  (
( ( K  x.  pi )  +  pi )  -  pi )  =  ( K  x.  pi ) )
5247, 51eqtrd 2210 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  -  pi )  =  ( K  x.  pi ) )
5352adantl 277 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) )  -  pi )  =  ( K  x.  pi ) )
5453oveq2d 5893 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( A  +  ( ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  -  pi ) )  =  ( A  +  ( K  x.  pi ) ) )
5531, 54eqtr2d 2211 . . . . . . . 8  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( A  +  ( K  x.  pi ) )  =  ( ( A  -  pi )  +  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )
561, 55sylan2 286 . . . . . . 7  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( A  +  ( K  x.  pi ) )  =  ( ( A  -  pi )  +  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )
5756fveq2d 5521 . . . . . 6  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
5857adantr 276 . . . . 5  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
59 subcl 8158 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  pi  e.  CC )  -> 
( A  -  pi )  e.  CC )
604, 59mpan2 425 . . . . . . . 8  |-  ( A  e.  CC  ->  ( A  -  pi )  e.  CC )
61 sinper 14269 . . . . . . . 8  |-  ( ( ( A  -  pi )  e.  CC  /\  (
( K  +  1 )  /  2 )  e.  ZZ )  -> 
( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  -  pi ) ) )
6260, 61sylan 283 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( K  + 
1 )  /  2
)  e.  ZZ )  ->  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  -  pi ) ) )
6362adantlr 477 . . . . . 6  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  -  pi ) ) )
64 sinmpi 14275 . . . . . . 7  |-  ( A  e.  CC  ->  ( sin `  ( A  -  pi ) )  =  -u ( sin `  A ) )
6564ad2antrr 488 . . . . . 6  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  -  pi )
)  =  -u ( sin `  A ) )
6663, 65eqtrd 2210 . . . . 5  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  -u ( sin `  A ) )
6758, 66eqtrd 2210 . . . 4  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  -u ( sin `  A
) )
6867fveq2d 5521 . . 3  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  -u ( sin `  A ) ) )
69 sincl 11716 . . . . 5  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
7069absnegd 11200 . . . 4  |-  ( A  e.  CC  ->  ( abs `  -u ( sin `  A
) )  =  ( abs `  ( sin `  A ) ) )
7170ad2antrr 488 . . 3  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( abs `  -u ( sin `  A ) )  =  ( abs `  ( sin `  A ) ) )
7268, 71eqtrd 2210 . 2  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
73 zeo 9360 . . 3  |-  ( K  e.  ZZ  ->  (
( K  /  2
)  e.  ZZ  \/  ( ( K  + 
1 )  /  2
)  e.  ZZ ) )
7473adantl 277 . 2  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( ( K  / 
2 )  e.  ZZ  \/  ( ( K  + 
1 )  /  2
)  e.  ZZ ) )
7522, 72, 74mpjaodan 798 1  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2148   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   CCcc 7811   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818    - cmin 8130   -ucneg 8131   # cap 8540    / cdiv 8631   2c2 8972   ZZcz 9255   abscabs 11008   sincsin 11654   picpi 11657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933  ax-pre-suploc 7934  ax-addf 7935  ax-mulf 7936
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-disj 3983  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-of 6085  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-map 6652  df-pm 6653  df-en 6743  df-dom 6744  df-fin 6745  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985  df-8 8986  df-9 8987  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-xneg 9774  df-xadd 9775  df-ioo 9894  df-ioc 9895  df-ico 9896  df-icc 9897  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-fac 10708  df-bc 10730  df-ihash 10758  df-shft 10826  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-sumdc 11364  df-ef 11658  df-sin 11660  df-cos 11661  df-pi 11663  df-rest 12695  df-topgen 12714  df-psmet 13486  df-xmet 13487  df-met 13488  df-bl 13489  df-mopn 13490  df-top 13537  df-topon 13550  df-bases 13582  df-ntr 13635  df-cn 13727  df-cnp 13728  df-tx 13792  df-cncf 14097  df-limced 14164  df-dvap 14165
This theorem is referenced by:  sinkpi  14307
  Copyright terms: Public domain W3C validator