| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abssinper | Unicode version | ||
| Description: The absolute value of
sine has period |
| Ref | Expression |
|---|---|
| abssinper |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9447 |
. . . . . . . . . 10
| |
| 2 | halfcl 9333 |
. . . . . . . . . . . 12
| |
| 3 | 2cn 9177 |
. . . . . . . . . . . . 13
| |
| 4 | picn 15455 |
. . . . . . . . . . . . 13
| |
| 5 | mulass 8126 |
. . . . . . . . . . . . 13
| |
| 6 | 3, 4, 5 | mp3an23 1363 |
. . . . . . . . . . . 12
|
| 7 | 2, 6 | syl 14 |
. . . . . . . . . . 11
|
| 8 | 2ap0 9199 |
. . . . . . . . . . . . 13
| |
| 9 | divcanap1 8824 |
. . . . . . . . . . . . 13
| |
| 10 | 3, 8, 9 | mp3an23 1363 |
. . . . . . . . . . . 12
|
| 11 | 10 | oveq1d 6015 |
. . . . . . . . . . 11
|
| 12 | 7, 11 | eqtr3d 2264 |
. . . . . . . . . 10
|
| 13 | 1, 12 | syl 14 |
. . . . . . . . 9
|
| 14 | 13 | adantl 277 |
. . . . . . . 8
|
| 15 | 14 | oveq2d 6016 |
. . . . . . 7
|
| 16 | 15 | fveq2d 5630 |
. . . . . 6
|
| 17 | 16 | eqcomd 2235 |
. . . . 5
|
| 18 | 17 | adantr 276 |
. . . 4
|
| 19 | sinper 15477 |
. . . . 5
| |
| 20 | 19 | adantlr 477 |
. . . 4
|
| 21 | 18, 20 | eqtrd 2262 |
. . 3
|
| 22 | 21 | fveq2d 5630 |
. 2
|
| 23 | peano2cn 8277 |
. . . . . . . . . . . 12
| |
| 24 | halfcl 9333 |
. . . . . . . . . . . 12
| |
| 25 | 23, 24 | syl 14 |
. . . . . . . . . . 11
|
| 26 | 3, 4 | mulcli 8147 |
. . . . . . . . . . 11
|
| 27 | mulcl 8122 |
. . . . . . . . . . 11
| |
| 28 | 25, 26, 27 | sylancl 413 |
. . . . . . . . . 10
|
| 29 | subadd23 8354 |
. . . . . . . . . . 11
| |
| 30 | 4, 29 | mp3an2 1359 |
. . . . . . . . . 10
|
| 31 | 28, 30 | sylan2 286 |
. . . . . . . . 9
|
| 32 | divcanap1 8824 |
. . . . . . . . . . . . . . . . . . 19
| |
| 33 | 3, 8, 32 | mp3an23 1363 |
. . . . . . . . . . . . . . . . . 18
|
| 34 | 23, 33 | syl 14 |
. . . . . . . . . . . . . . . . 17
|
| 35 | 34 | oveq1d 6015 |
. . . . . . . . . . . . . . . 16
|
| 36 | ax-1cn 8088 |
. . . . . . . . . . . . . . . . 17
| |
| 37 | adddir 8133 |
. . . . . . . . . . . . . . . . 17
| |
| 38 | 36, 4, 37 | mp3an23 1363 |
. . . . . . . . . . . . . . . 16
|
| 39 | 35, 38 | eqtrd 2262 |
. . . . . . . . . . . . . . 15
|
| 40 | 4 | mullidi 8145 |
. . . . . . . . . . . . . . . 16
|
| 41 | 40 | oveq2i 6011 |
. . . . . . . . . . . . . . 15
|
| 42 | 39, 41 | eqtr2di 2279 |
. . . . . . . . . . . . . 14
|
| 43 | mulass 8126 |
. . . . . . . . . . . . . . . 16
| |
| 44 | 3, 4, 43 | mp3an23 1363 |
. . . . . . . . . . . . . . 15
|
| 45 | 25, 44 | syl 14 |
. . . . . . . . . . . . . 14
|
| 46 | 42, 45 | eqtr2d 2263 |
. . . . . . . . . . . . 13
|
| 47 | 46 | oveq1d 6015 |
. . . . . . . . . . . 12
|
| 48 | mulcl 8122 |
. . . . . . . . . . . . . 14
| |
| 49 | 4, 48 | mpan2 425 |
. . . . . . . . . . . . 13
|
| 50 | pncan 8348 |
. . . . . . . . . . . . 13
| |
| 51 | 49, 4, 50 | sylancl 413 |
. . . . . . . . . . . 12
|
| 52 | 47, 51 | eqtrd 2262 |
. . . . . . . . . . 11
|
| 53 | 52 | adantl 277 |
. . . . . . . . . 10
|
| 54 | 53 | oveq2d 6016 |
. . . . . . . . 9
|
| 55 | 31, 54 | eqtr2d 2263 |
. . . . . . . 8
|
| 56 | 1, 55 | sylan2 286 |
. . . . . . 7
|
| 57 | 56 | fveq2d 5630 |
. . . . . 6
|
| 58 | 57 | adantr 276 |
. . . . 5
|
| 59 | subcl 8341 |
. . . . . . . . 9
| |
| 60 | 4, 59 | mpan2 425 |
. . . . . . . 8
|
| 61 | sinper 15477 |
. . . . . . . 8
| |
| 62 | 60, 61 | sylan 283 |
. . . . . . 7
|
| 63 | 62 | adantlr 477 |
. . . . . 6
|
| 64 | sinmpi 15483 |
. . . . . . 7
| |
| 65 | 64 | ad2antrr 488 |
. . . . . 6
|
| 66 | 63, 65 | eqtrd 2262 |
. . . . 5
|
| 67 | 58, 66 | eqtrd 2262 |
. . . 4
|
| 68 | 67 | fveq2d 5630 |
. . 3
|
| 69 | sincl 12212 |
. . . . 5
| |
| 70 | 69 | absnegd 11695 |
. . . 4
|
| 71 | 70 | ad2antrr 488 |
. . 3
|
| 72 | 68, 71 | eqtrd 2262 |
. 2
|
| 73 | zeo 9548 |
. . 3
| |
| 74 | 73 | adantl 277 |
. 2
|
| 75 | 22, 72, 74 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 ax-pre-suploc 8116 ax-addf 8117 ax-mulf 8118 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-disj 4059 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-of 6216 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-oadd 6564 df-er 6678 df-map 6795 df-pm 6796 df-en 6886 df-dom 6887 df-fin 6888 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-xneg 9964 df-xadd 9965 df-ioo 10084 df-ioc 10085 df-ico 10086 df-icc 10087 df-fz 10201 df-fzo 10335 df-seqfrec 10665 df-exp 10756 df-fac 10943 df-bc 10965 df-ihash 10993 df-shft 11321 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-sumdc 11860 df-ef 12154 df-sin 12156 df-cos 12157 df-pi 12159 df-rest 13269 df-topgen 13288 df-psmet 14501 df-xmet 14502 df-met 14503 df-bl 14504 df-mopn 14505 df-top 14666 df-topon 14679 df-bases 14711 df-ntr 14764 df-cn 14856 df-cnp 14857 df-tx 14921 df-cncf 15239 df-limced 15324 df-dvap 15325 |
| This theorem is referenced by: sinkpi 15515 |
| Copyright terms: Public domain | W3C validator |