ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssinper Unicode version

Theorem abssinper 15022
Description: The absolute value of sine has period  pi. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
abssinper  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )

Proof of Theorem abssinper
StepHypRef Expression
1 zcn 9325 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  K  e.  CC )
2 halfcl 9211 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  ( K  /  2 )  e.  CC )
3 2cn 9055 . . . . . . . . . . . . 13  |-  2  e.  CC
4 picn 14963 . . . . . . . . . . . . 13  |-  pi  e.  CC
5 mulass 8005 . . . . . . . . . . . . 13  |-  ( ( ( K  /  2
)  e.  CC  /\  2  e.  CC  /\  pi  e.  CC )  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) )
63, 4, 5mp3an23 1340 . . . . . . . . . . . 12  |-  ( ( K  /  2 )  e.  CC  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) )
72, 6syl 14 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) )
8 2ap0 9077 . . . . . . . . . . . . 13  |-  2 #  0
9 divcanap1 8702 . . . . . . . . . . . . 13  |-  ( ( K  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  (
( K  /  2
)  x.  2 )  =  K )
103, 8, 9mp3an23 1340 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  (
( K  /  2
)  x.  2 )  =  K )
1110oveq1d 5934 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( K  x.  pi ) )
127, 11eqtr3d 2228 . . . . . . . . . 10  |-  ( K  e.  CC  ->  (
( K  /  2
)  x.  ( 2  x.  pi ) )  =  ( K  x.  pi ) )
131, 12syl 14 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  (
( K  /  2
)  x.  ( 2  x.  pi ) )  =  ( K  x.  pi ) )
1413adantl 277 . . . . . . . 8  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( ( K  / 
2 )  x.  (
2  x.  pi ) )  =  ( K  x.  pi ) )
1514oveq2d 5935 . . . . . . 7  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( A  +  ( ( K  /  2
)  x.  ( 2  x.  pi ) ) )  =  ( A  +  ( K  x.  pi ) ) )
1615fveq2d 5559 . . . . . 6  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  +  ( K  x.  pi ) ) ) )
1716eqcomd 2199 . . . . 5  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
1817adantr 276 . . . 4  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
19 sinper 14985 . . . . 5  |-  ( ( A  e.  CC  /\  ( K  /  2
)  e.  ZZ )  ->  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  A
) )
2019adantlr 477 . . . 4  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  A
) )
2118, 20eqtrd 2226 . . 3  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  A
) )
2221fveq2d 5559 . 2  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
23 peano2cn 8156 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  ( K  +  1 )  e.  CC )
24 halfcl 9211 . . . . . . . . . . . 12  |-  ( ( K  +  1 )  e.  CC  ->  (
( K  +  1 )  /  2 )  e.  CC )
2523, 24syl 14 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( K  +  1 )  /  2 )  e.  CC )
263, 4mulcli 8026 . . . . . . . . . . 11  |-  ( 2  x.  pi )  e.  CC
27 mulcl 8001 . . . . . . . . . . 11  |-  ( ( ( ( K  + 
1 )  /  2
)  e.  CC  /\  ( 2  x.  pi )  e.  CC )  ->  ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  e.  CC )
2825, 26, 27sylancl 413 . . . . . . . . . 10  |-  ( K  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  e.  CC )
29 subadd23 8233 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  pi  e.  CC  /\  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  e.  CC )  -> 
( ( A  -  pi )  +  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) ) )  =  ( A  +  ( ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) )  -  pi ) ) )
304, 29mp3an2 1336 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  e.  CC )  ->  ( ( A  -  pi )  +  ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) ) )  =  ( A  +  ( ( ( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  -  pi ) ) )
3128, 30sylan2 286 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( ( A  -  pi )  +  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) ) )  =  ( A  +  ( ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) )  -  pi ) ) )
32 divcanap1 8702 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  +  1 )  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  (
( ( K  + 
1 )  /  2
)  x.  2 )  =  ( K  + 
1 ) )
333, 8, 32mp3an23 1340 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  +  1 )  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  2 )  =  ( K  + 
1 ) )
3423, 33syl 14 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  2 )  =  ( K  + 
1 ) )
3534oveq1d 5934 . . . . . . . . . . . . . . . 16  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  +  1 )  x.  pi ) )
36 ax-1cn 7967 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
37 adddir 8012 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  CC  /\  1  e.  CC  /\  pi  e.  CC )  ->  (
( K  +  1 )  x.  pi )  =  ( ( K  x.  pi )  +  ( 1  x.  pi ) ) )
3836, 4, 37mp3an23 1340 . . . . . . . . . . . . . . . 16  |-  ( K  e.  CC  ->  (
( K  +  1 )  x.  pi )  =  ( ( K  x.  pi )  +  ( 1  x.  pi ) ) )
3935, 38eqtrd 2226 . . . . . . . . . . . . . . 15  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  x.  pi )  +  ( 1  x.  pi ) ) )
404mullidi 8024 . . . . . . . . . . . . . . . 16  |-  ( 1  x.  pi )  =  pi
4140oveq2i 5930 . . . . . . . . . . . . . . 15  |-  ( ( K  x.  pi )  +  ( 1  x.  pi ) )  =  ( ( K  x.  pi )  +  pi )
4239, 41eqtr2di 2243 . . . . . . . . . . . . . 14  |-  ( K  e.  CC  ->  (
( K  x.  pi )  +  pi )  =  ( ( ( ( K  +  1 )  /  2 )  x.  2 )  x.  pi ) )
43 mulass 8005 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  + 
1 )  /  2
)  e.  CC  /\  2  e.  CC  /\  pi  e.  CC )  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) )
443, 4, 43mp3an23 1340 . . . . . . . . . . . . . . 15  |-  ( ( ( K  +  1 )  /  2 )  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) )
4525, 44syl 14 . . . . . . . . . . . . . 14  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) )
4642, 45eqtr2d 2227 . . . . . . . . . . . . 13  |-  ( K  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  =  ( ( K  x.  pi )  +  pi ) )
4746oveq1d 5934 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  -  pi )  =  ( ( ( K  x.  pi )  +  pi )  -  pi ) )
48 mulcl 8001 . . . . . . . . . . . . . 14  |-  ( ( K  e.  CC  /\  pi  e.  CC )  -> 
( K  x.  pi )  e.  CC )
494, 48mpan2 425 . . . . . . . . . . . . 13  |-  ( K  e.  CC  ->  ( K  x.  pi )  e.  CC )
50 pncan 8227 . . . . . . . . . . . . 13  |-  ( ( ( K  x.  pi )  e.  CC  /\  pi  e.  CC )  ->  (
( ( K  x.  pi )  +  pi )  -  pi )  =  ( K  x.  pi ) )
5149, 4, 50sylancl 413 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  (
( ( K  x.  pi )  +  pi )  -  pi )  =  ( K  x.  pi ) )
5247, 51eqtrd 2226 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  -  pi )  =  ( K  x.  pi ) )
5352adantl 277 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) )  -  pi )  =  ( K  x.  pi ) )
5453oveq2d 5935 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( A  +  ( ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  -  pi ) )  =  ( A  +  ( K  x.  pi ) ) )
5531, 54eqtr2d 2227 . . . . . . . 8  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( A  +  ( K  x.  pi ) )  =  ( ( A  -  pi )  +  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )
561, 55sylan2 286 . . . . . . 7  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( A  +  ( K  x.  pi ) )  =  ( ( A  -  pi )  +  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )
5756fveq2d 5559 . . . . . 6  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
5857adantr 276 . . . . 5  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
59 subcl 8220 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  pi  e.  CC )  -> 
( A  -  pi )  e.  CC )
604, 59mpan2 425 . . . . . . . 8  |-  ( A  e.  CC  ->  ( A  -  pi )  e.  CC )
61 sinper 14985 . . . . . . . 8  |-  ( ( ( A  -  pi )  e.  CC  /\  (
( K  +  1 )  /  2 )  e.  ZZ )  -> 
( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  -  pi ) ) )
6260, 61sylan 283 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( K  + 
1 )  /  2
)  e.  ZZ )  ->  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  -  pi ) ) )
6362adantlr 477 . . . . . 6  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  -  pi ) ) )
64 sinmpi 14991 . . . . . . 7  |-  ( A  e.  CC  ->  ( sin `  ( A  -  pi ) )  =  -u ( sin `  A ) )
6564ad2antrr 488 . . . . . 6  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  -  pi )
)  =  -u ( sin `  A ) )
6663, 65eqtrd 2226 . . . . 5  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  -u ( sin `  A ) )
6758, 66eqtrd 2226 . . . 4  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  -u ( sin `  A
) )
6867fveq2d 5559 . . 3  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  -u ( sin `  A ) ) )
69 sincl 11852 . . . . 5  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
7069absnegd 11336 . . . 4  |-  ( A  e.  CC  ->  ( abs `  -u ( sin `  A
) )  =  ( abs `  ( sin `  A ) ) )
7170ad2antrr 488 . . 3  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( abs `  -u ( sin `  A ) )  =  ( abs `  ( sin `  A ) ) )
7268, 71eqtrd 2226 . 2  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
73 zeo 9425 . . 3  |-  ( K  e.  ZZ  ->  (
( K  /  2
)  e.  ZZ  \/  ( ( K  + 
1 )  /  2
)  e.  ZZ ) )
7473adantl 277 . 2  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( ( K  / 
2 )  e.  ZZ  \/  ( ( K  + 
1 )  /  2
)  e.  ZZ ) )
7522, 72, 74mpjaodan 799 1  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   CCcc 7872   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    - cmin 8192   -ucneg 8193   # cap 8602    / cdiv 8693   2c2 9035   ZZcz 9320   abscabs 11144   sincsin 11790   picpi 11793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994  ax-pre-suploc 7995  ax-addf 7996  ax-mulf 7997
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-disj 4008  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-map 6706  df-pm 6707  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-ioo 9961  df-ioc 9962  df-ico 9963  df-icc 9964  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-fac 10800  df-bc 10822  df-ihash 10850  df-shft 10962  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ef 11794  df-sin 11796  df-cos 11797  df-pi 11799  df-rest 12855  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-top 14177  df-topon 14190  df-bases 14222  df-ntr 14275  df-cn 14367  df-cnp 14368  df-tx 14432  df-cncf 14750  df-limced 14835  df-dvap 14836
This theorem is referenced by:  sinkpi  15023
  Copyright terms: Public domain W3C validator