ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssinper Unicode version

Theorem abssinper 13520
Description: The absolute value of sine has period  pi. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
abssinper  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )

Proof of Theorem abssinper
StepHypRef Expression
1 zcn 9204 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  K  e.  CC )
2 halfcl 9091 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  ( K  /  2 )  e.  CC )
3 2cn 8936 . . . . . . . . . . . . 13  |-  2  e.  CC
4 picn 13461 . . . . . . . . . . . . 13  |-  pi  e.  CC
5 mulass 7892 . . . . . . . . . . . . 13  |-  ( ( ( K  /  2
)  e.  CC  /\  2  e.  CC  /\  pi  e.  CC )  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) )
63, 4, 5mp3an23 1324 . . . . . . . . . . . 12  |-  ( ( K  /  2 )  e.  CC  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) )
72, 6syl 14 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) )
8 2ap0 8958 . . . . . . . . . . . . 13  |-  2 #  0
9 divcanap1 8585 . . . . . . . . . . . . 13  |-  ( ( K  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  (
( K  /  2
)  x.  2 )  =  K )
103, 8, 9mp3an23 1324 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  (
( K  /  2
)  x.  2 )  =  K )
1110oveq1d 5865 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( ( K  / 
2 )  x.  2 )  x.  pi )  =  ( K  x.  pi ) )
127, 11eqtr3d 2205 . . . . . . . . . 10  |-  ( K  e.  CC  ->  (
( K  /  2
)  x.  ( 2  x.  pi ) )  =  ( K  x.  pi ) )
131, 12syl 14 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  (
( K  /  2
)  x.  ( 2  x.  pi ) )  =  ( K  x.  pi ) )
1413adantl 275 . . . . . . . 8  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( ( K  / 
2 )  x.  (
2  x.  pi ) )  =  ( K  x.  pi ) )
1514oveq2d 5866 . . . . . . 7  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( A  +  ( ( K  /  2
)  x.  ( 2  x.  pi ) ) )  =  ( A  +  ( K  x.  pi ) ) )
1615fveq2d 5498 . . . . . 6  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  +  ( K  x.  pi ) ) ) )
1716eqcomd 2176 . . . . 5  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
1817adantr 274 . . . 4  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
19 sinper 13483 . . . . 5  |-  ( ( A  e.  CC  /\  ( K  /  2
)  e.  ZZ )  ->  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  A
) )
2019adantlr 474 . . . 4  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( ( K  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  A
) )
2118, 20eqtrd 2203 . . 3  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  A
) )
2221fveq2d 5498 . 2  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( K  / 
2 )  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
23 peano2cn 8041 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  ( K  +  1 )  e.  CC )
24 halfcl 9091 . . . . . . . . . . . 12  |-  ( ( K  +  1 )  e.  CC  ->  (
( K  +  1 )  /  2 )  e.  CC )
2523, 24syl 14 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( K  +  1 )  /  2 )  e.  CC )
263, 4mulcli 7912 . . . . . . . . . . 11  |-  ( 2  x.  pi )  e.  CC
27 mulcl 7888 . . . . . . . . . . 11  |-  ( ( ( ( K  + 
1 )  /  2
)  e.  CC  /\  ( 2  x.  pi )  e.  CC )  ->  ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  e.  CC )
2825, 26, 27sylancl 411 . . . . . . . . . 10  |-  ( K  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  e.  CC )
29 subadd23 8118 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  pi  e.  CC  /\  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  e.  CC )  -> 
( ( A  -  pi )  +  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) ) )  =  ( A  +  ( ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) )  -  pi ) ) )
304, 29mp3an2 1320 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  e.  CC )  ->  ( ( A  -  pi )  +  ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) ) )  =  ( A  +  ( ( ( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  -  pi ) ) )
3128, 30sylan2 284 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( ( A  -  pi )  +  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) ) )  =  ( A  +  ( ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) )  -  pi ) ) )
32 divcanap1 8585 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  +  1 )  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  (
( ( K  + 
1 )  /  2
)  x.  2 )  =  ( K  + 
1 ) )
333, 8, 32mp3an23 1324 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  +  1 )  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  2 )  =  ( K  + 
1 ) )
3423, 33syl 14 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  2 )  =  ( K  + 
1 ) )
3534oveq1d 5865 . . . . . . . . . . . . . . . 16  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  +  1 )  x.  pi ) )
36 ax-1cn 7854 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
37 adddir 7898 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  CC  /\  1  e.  CC  /\  pi  e.  CC )  ->  (
( K  +  1 )  x.  pi )  =  ( ( K  x.  pi )  +  ( 1  x.  pi ) ) )
3836, 4, 37mp3an23 1324 . . . . . . . . . . . . . . . 16  |-  ( K  e.  CC  ->  (
( K  +  1 )  x.  pi )  =  ( ( K  x.  pi )  +  ( 1  x.  pi ) ) )
3935, 38eqtrd 2203 . . . . . . . . . . . . . . 15  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( K  x.  pi )  +  ( 1  x.  pi ) ) )
404mulid2i 7910 . . . . . . . . . . . . . . . 16  |-  ( 1  x.  pi )  =  pi
4140oveq2i 5861 . . . . . . . . . . . . . . 15  |-  ( ( K  x.  pi )  +  ( 1  x.  pi ) )  =  ( ( K  x.  pi )  +  pi )
4239, 41eqtr2di 2220 . . . . . . . . . . . . . 14  |-  ( K  e.  CC  ->  (
( K  x.  pi )  +  pi )  =  ( ( ( ( K  +  1 )  /  2 )  x.  2 )  x.  pi ) )
43 mulass 7892 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  + 
1 )  /  2
)  e.  CC  /\  2  e.  CC  /\  pi  e.  CC )  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) )
443, 4, 43mp3an23 1324 . . . . . . . . . . . . . . 15  |-  ( ( ( K  +  1 )  /  2 )  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) )
4525, 44syl 14 . . . . . . . . . . . . . 14  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  2 )  x.  pi )  =  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) )
4642, 45eqtr2d 2204 . . . . . . . . . . . . 13  |-  ( K  e.  CC  ->  (
( ( K  + 
1 )  /  2
)  x.  ( 2  x.  pi ) )  =  ( ( K  x.  pi )  +  pi ) )
4746oveq1d 5865 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  -  pi )  =  ( ( ( K  x.  pi )  +  pi )  -  pi ) )
48 mulcl 7888 . . . . . . . . . . . . . 14  |-  ( ( K  e.  CC  /\  pi  e.  CC )  -> 
( K  x.  pi )  e.  CC )
494, 48mpan2 423 . . . . . . . . . . . . 13  |-  ( K  e.  CC  ->  ( K  x.  pi )  e.  CC )
50 pncan 8112 . . . . . . . . . . . . 13  |-  ( ( ( K  x.  pi )  e.  CC  /\  pi  e.  CC )  ->  (
( ( K  x.  pi )  +  pi )  -  pi )  =  ( K  x.  pi ) )
5149, 4, 50sylancl 411 . . . . . . . . . . . 12  |-  ( K  e.  CC  ->  (
( ( K  x.  pi )  +  pi )  -  pi )  =  ( K  x.  pi ) )
5247, 51eqtrd 2203 . . . . . . . . . . 11  |-  ( K  e.  CC  ->  (
( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  -  pi )  =  ( K  x.  pi ) )
5352adantl 275 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) )  -  pi )  =  ( K  x.  pi ) )
5453oveq2d 5866 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( A  +  ( ( ( ( K  +  1 )  / 
2 )  x.  (
2  x.  pi ) )  -  pi ) )  =  ( A  +  ( K  x.  pi ) ) )
5531, 54eqtr2d 2204 . . . . . . . 8  |-  ( ( A  e.  CC  /\  K  e.  CC )  ->  ( A  +  ( K  x.  pi ) )  =  ( ( A  -  pi )  +  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )
561, 55sylan2 284 . . . . . . 7  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( A  +  ( K  x.  pi ) )  =  ( ( A  -  pi )  +  ( ( ( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )
5756fveq2d 5498 . . . . . 6  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
5857adantr 274 . . . . 5  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) ) )
59 subcl 8105 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  pi  e.  CC )  -> 
( A  -  pi )  e.  CC )
604, 59mpan2 423 . . . . . . . 8  |-  ( A  e.  CC  ->  ( A  -  pi )  e.  CC )
61 sinper 13483 . . . . . . . 8  |-  ( ( ( A  -  pi )  e.  CC  /\  (
( K  +  1 )  /  2 )  e.  ZZ )  -> 
( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  -  pi ) ) )
6260, 61sylan 281 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( K  + 
1 )  /  2
)  e.  ZZ )  ->  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  -  pi ) ) )
6362adantlr 474 . . . . . 6  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  ( A  -  pi ) ) )
64 sinmpi 13489 . . . . . . 7  |-  ( A  e.  CC  ->  ( sin `  ( A  -  pi ) )  =  -u ( sin `  A ) )
6564ad2antrr 485 . . . . . 6  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  -  pi )
)  =  -u ( sin `  A ) )
6663, 65eqtrd 2203 . . . . 5  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  (
( A  -  pi )  +  ( (
( K  +  1 )  /  2 )  x.  ( 2  x.  pi ) ) ) )  =  -u ( sin `  A ) )
6758, 66eqtrd 2203 . . . 4  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  pi ) ) )  =  -u ( sin `  A
) )
6867fveq2d 5498 . . 3  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  -u ( sin `  A ) ) )
69 sincl 11656 . . . . 5  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
7069absnegd 11140 . . . 4  |-  ( A  e.  CC  ->  ( abs `  -u ( sin `  A
) )  =  ( abs `  ( sin `  A ) ) )
7170ad2antrr 485 . . 3  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( abs `  -u ( sin `  A ) )  =  ( abs `  ( sin `  A ) ) )
7268, 71eqtrd 2203 . 2  |-  ( ( ( A  e.  CC  /\  K  e.  ZZ )  /\  ( ( K  +  1 )  / 
2 )  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
73 zeo 9304 . . 3  |-  ( K  e.  ZZ  ->  (
( K  /  2
)  e.  ZZ  \/  ( ( K  + 
1 )  /  2
)  e.  ZZ ) )
7473adantl 275 . 2  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( ( K  / 
2 )  e.  ZZ  \/  ( ( K  + 
1 )  /  2
)  e.  ZZ ) )
7522, 72, 74mpjaodan 793 1  |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703    = wceq 1348    e. wcel 2141   class class class wbr 3987   ` cfv 5196  (class class class)co 5850   CCcc 7759   0cc0 7761   1c1 7762    + caddc 7764    x. cmul 7766    - cmin 8077   -ucneg 8078   # cap 8487    / cdiv 8576   2c2 8916   ZZcz 9199   abscabs 10948   sincsin 11594   picpi 11597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881  ax-pre-suploc 7882  ax-addf 7883  ax-mulf 7884
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-disj 3965  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-of 6058  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-frec 6367  df-1o 6392  df-oadd 6396  df-er 6509  df-map 6624  df-pm 6625  df-en 6715  df-dom 6716  df-fin 6717  df-sup 6957  df-inf 6958  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-5 8927  df-6 8928  df-7 8929  df-8 8930  df-9 8931  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-xneg 9716  df-xadd 9717  df-ioo 9836  df-ioc 9837  df-ico 9838  df-icc 9839  df-fz 9953  df-fzo 10086  df-seqfrec 10389  df-exp 10463  df-fac 10647  df-bc 10669  df-ihash 10697  df-shft 10766  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-clim 11229  df-sumdc 11304  df-ef 11598  df-sin 11600  df-cos 11601  df-pi 11603  df-rest 12568  df-topgen 12587  df-psmet 12740  df-xmet 12741  df-met 12742  df-bl 12743  df-mopn 12744  df-top 12749  df-topon 12762  df-bases 12794  df-ntr 12849  df-cn 12941  df-cnp 12942  df-tx 13006  df-cncf 13311  df-limced 13378  df-dvap 13379
This theorem is referenced by:  sinkpi  13521
  Copyright terms: Public domain W3C validator