| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2re | Unicode version | ||
| Description: A theorem for reals analogous the second Peano postulate peano2 4687. (Contributed by NM, 5-Jul-2005.) |
| Ref | Expression |
|---|---|
| peano2re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8145 |
. 2
| |
| 2 | readdcl 8125 |
. 2
| |
| 3 | 1, 2 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1re 8093 ax-addrcl 8096 |
| This theorem is referenced by: lep1 8992 letrp1 8995 p1le 8996 ledivp1 9050 nnssre 9114 nn1suc 9129 nnge1 9133 div4p1lem1div2 9365 zltp1le 9501 suprzclex 9545 zeo 9552 peano2uz2 9554 uzind 9558 btwnapz 9577 numltc 9603 ge0p1rp 9881 fznatpl1 10272 ubmelm1fzo 10432 infssuzex 10453 qbtwnxr 10477 flhalf 10522 fldiv4p1lem1div2 10525 seq3split 10710 seq3f1olemqsumk 10734 seqf1oglem1 10741 seqf1oglem2 10742 bernneq3 10884 facwordi 10962 faclbnd 10963 expcnvap0 12013 cvgratnnlemfm 12040 cvgratnnlemrate 12041 cvgratz 12043 mertenslemi1 12046 fprodntrivap 12095 divalglemnqt 12431 nonsq 12729 eulerthlema 12752 pcfac 12873 1arith 12890 ennnfonelemkh 12983 tgioo 15228 suplociccreex 15298 hoverb 15322 reeff1olem 15445 lgsvalmod 15698 gausslemma2dlem3 15742 lgsquadlem2 15757 |
| Copyright terms: Public domain | W3C validator |