| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2re | Unicode version | ||
| Description: A theorem for reals analogous the second Peano postulate peano2 4632. (Contributed by NM, 5-Jul-2005.) |
| Ref | Expression |
|---|---|
| peano2re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8042 |
. 2
| |
| 2 | readdcl 8022 |
. 2
| |
| 3 | 1, 2 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1re 7990 ax-addrcl 7993 |
| This theorem is referenced by: lep1 8889 letrp1 8892 p1le 8893 ledivp1 8947 nnssre 9011 nn1suc 9026 nnge1 9030 div4p1lem1div2 9262 zltp1le 9397 suprzclex 9441 zeo 9448 peano2uz2 9450 uzind 9454 btwnapz 9473 numltc 9499 ge0p1rp 9777 fznatpl1 10168 ubmelm1fzo 10319 infssuzex 10340 qbtwnxr 10364 flhalf 10409 fldiv4p1lem1div2 10412 seq3split 10597 seq3f1olemqsumk 10621 seqf1oglem1 10628 seqf1oglem2 10629 bernneq3 10771 facwordi 10849 faclbnd 10850 expcnvap0 11684 cvgratnnlemfm 11711 cvgratnnlemrate 11712 cvgratz 11714 mertenslemi1 11717 fprodntrivap 11766 divalglemnqt 12102 nonsq 12400 eulerthlema 12423 pcfac 12544 1arith 12561 ennnfonelemkh 12654 tgioo 14874 suplociccreex 14944 hoverb 14968 reeff1olem 15091 lgsvalmod 15344 gausslemma2dlem3 15388 lgsquadlem2 15403 |
| Copyright terms: Public domain | W3C validator |