| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2re | Unicode version | ||
| Description: A theorem for reals analogous the second Peano postulate peano2 4661. (Contributed by NM, 5-Jul-2005.) |
| Ref | Expression |
|---|---|
| peano2re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8106 |
. 2
| |
| 2 | readdcl 8086 |
. 2
| |
| 3 | 1, 2 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1re 8054 ax-addrcl 8057 |
| This theorem is referenced by: lep1 8953 letrp1 8956 p1le 8957 ledivp1 9011 nnssre 9075 nn1suc 9090 nnge1 9094 div4p1lem1div2 9326 zltp1le 9462 suprzclex 9506 zeo 9513 peano2uz2 9515 uzind 9519 btwnapz 9538 numltc 9564 ge0p1rp 9842 fznatpl1 10233 ubmelm1fzo 10392 infssuzex 10413 qbtwnxr 10437 flhalf 10482 fldiv4p1lem1div2 10485 seq3split 10670 seq3f1olemqsumk 10694 seqf1oglem1 10701 seqf1oglem2 10702 bernneq3 10844 facwordi 10922 faclbnd 10923 expcnvap0 11928 cvgratnnlemfm 11955 cvgratnnlemrate 11956 cvgratz 11958 mertenslemi1 11961 fprodntrivap 12010 divalglemnqt 12346 nonsq 12644 eulerthlema 12667 pcfac 12788 1arith 12805 ennnfonelemkh 12898 tgioo 15141 suplociccreex 15211 hoverb 15235 reeff1olem 15358 lgsvalmod 15611 gausslemma2dlem3 15655 lgsquadlem2 15670 |
| Copyright terms: Public domain | W3C validator |