| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2re | Unicode version | ||
| Description: A theorem for reals analogous the second Peano postulate peano2 4631. (Contributed by NM, 5-Jul-2005.) |
| Ref | Expression |
|---|---|
| peano2re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8025 |
. 2
| |
| 2 | readdcl 8005 |
. 2
| |
| 3 | 1, 2 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1re 7973 ax-addrcl 7976 |
| This theorem is referenced by: lep1 8872 letrp1 8875 p1le 8876 ledivp1 8930 nnssre 8994 nn1suc 9009 nnge1 9013 div4p1lem1div2 9245 zltp1le 9380 suprzclex 9424 zeo 9431 peano2uz2 9433 uzind 9437 btwnapz 9456 numltc 9482 ge0p1rp 9760 fznatpl1 10151 ubmelm1fzo 10302 infssuzex 10323 qbtwnxr 10347 flhalf 10392 fldiv4p1lem1div2 10395 seq3split 10580 seq3f1olemqsumk 10604 seqf1oglem1 10611 seqf1oglem2 10612 bernneq3 10754 facwordi 10832 faclbnd 10833 expcnvap0 11667 cvgratnnlemfm 11694 cvgratnnlemrate 11695 cvgratz 11697 mertenslemi1 11700 fprodntrivap 11749 divalglemnqt 12085 nonsq 12375 eulerthlema 12398 pcfac 12519 1arith 12536 ennnfonelemkh 12629 tgioo 14790 suplociccreex 14860 hoverb 14884 reeff1olem 15007 lgsvalmod 15260 gausslemma2dlem3 15304 lgsquadlem2 15319 |
| Copyright terms: Public domain | W3C validator |