| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2re | Unicode version | ||
| Description: A theorem for reals analogous the second Peano postulate peano2 4632. (Contributed by NM, 5-Jul-2005.) |
| Ref | Expression |
|---|---|
| peano2re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8030 |
. 2
| |
| 2 | readdcl 8010 |
. 2
| |
| 3 | 1, 2 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1re 7978 ax-addrcl 7981 |
| This theorem is referenced by: lep1 8877 letrp1 8880 p1le 8881 ledivp1 8935 nnssre 8999 nn1suc 9014 nnge1 9018 div4p1lem1div2 9250 zltp1le 9385 suprzclex 9429 zeo 9436 peano2uz2 9438 uzind 9442 btwnapz 9461 numltc 9487 ge0p1rp 9765 fznatpl1 10156 ubmelm1fzo 10307 infssuzex 10328 qbtwnxr 10352 flhalf 10397 fldiv4p1lem1div2 10400 seq3split 10585 seq3f1olemqsumk 10609 seqf1oglem1 10616 seqf1oglem2 10617 bernneq3 10759 facwordi 10837 faclbnd 10838 expcnvap0 11672 cvgratnnlemfm 11699 cvgratnnlemrate 11700 cvgratz 11702 mertenslemi1 11705 fprodntrivap 11754 divalglemnqt 12090 nonsq 12388 eulerthlema 12411 pcfac 12532 1arith 12549 ennnfonelemkh 12642 tgioo 14837 suplociccreex 14907 hoverb 14931 reeff1olem 15054 lgsvalmod 15307 gausslemma2dlem3 15351 lgsquadlem2 15366 |
| Copyright terms: Public domain | W3C validator |