| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2re | Unicode version | ||
| Description: A theorem for reals analogous the second Peano postulate peano2 4643. (Contributed by NM, 5-Jul-2005.) |
| Ref | Expression |
|---|---|
| peano2re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8071 |
. 2
| |
| 2 | readdcl 8051 |
. 2
| |
| 3 | 1, 2 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1re 8019 ax-addrcl 8022 |
| This theorem is referenced by: lep1 8918 letrp1 8921 p1le 8922 ledivp1 8976 nnssre 9040 nn1suc 9055 nnge1 9059 div4p1lem1div2 9291 zltp1le 9427 suprzclex 9471 zeo 9478 peano2uz2 9480 uzind 9484 btwnapz 9503 numltc 9529 ge0p1rp 9807 fznatpl1 10198 ubmelm1fzo 10355 infssuzex 10376 qbtwnxr 10400 flhalf 10445 fldiv4p1lem1div2 10448 seq3split 10633 seq3f1olemqsumk 10657 seqf1oglem1 10664 seqf1oglem2 10665 bernneq3 10807 facwordi 10885 faclbnd 10886 expcnvap0 11813 cvgratnnlemfm 11840 cvgratnnlemrate 11841 cvgratz 11843 mertenslemi1 11846 fprodntrivap 11895 divalglemnqt 12231 nonsq 12529 eulerthlema 12552 pcfac 12673 1arith 12690 ennnfonelemkh 12783 tgioo 15026 suplociccreex 15096 hoverb 15120 reeff1olem 15243 lgsvalmod 15496 gausslemma2dlem3 15540 lgsquadlem2 15555 |
| Copyright terms: Public domain | W3C validator |