| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2re | Unicode version | ||
| Description: A theorem for reals analogous the second Peano postulate peano2 4644. (Contributed by NM, 5-Jul-2005.) |
| Ref | Expression |
|---|---|
| peano2re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8073 |
. 2
| |
| 2 | readdcl 8053 |
. 2
| |
| 3 | 1, 2 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1re 8021 ax-addrcl 8024 |
| This theorem is referenced by: lep1 8920 letrp1 8923 p1le 8924 ledivp1 8978 nnssre 9042 nn1suc 9057 nnge1 9061 div4p1lem1div2 9293 zltp1le 9429 suprzclex 9473 zeo 9480 peano2uz2 9482 uzind 9486 btwnapz 9505 numltc 9531 ge0p1rp 9809 fznatpl1 10200 ubmelm1fzo 10357 infssuzex 10378 qbtwnxr 10402 flhalf 10447 fldiv4p1lem1div2 10450 seq3split 10635 seq3f1olemqsumk 10659 seqf1oglem1 10666 seqf1oglem2 10667 bernneq3 10809 facwordi 10887 faclbnd 10888 expcnvap0 11846 cvgratnnlemfm 11873 cvgratnnlemrate 11874 cvgratz 11876 mertenslemi1 11879 fprodntrivap 11928 divalglemnqt 12264 nonsq 12562 eulerthlema 12585 pcfac 12706 1arith 12723 ennnfonelemkh 12816 tgioo 15059 suplociccreex 15129 hoverb 15153 reeff1olem 15276 lgsvalmod 15529 gausslemma2dlem3 15573 lgsquadlem2 15588 |
| Copyright terms: Public domain | W3C validator |