ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0to3un2pr Unicode version

Theorem fz0to3un2pr 10155
Description: An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.)
Assertion
Ref Expression
fz0to3un2pr  |-  ( 0 ... 3 )  =  ( { 0 ,  1 }  u.  {
2 ,  3 } )

Proof of Theorem fz0to3un2pr
StepHypRef Expression
1 1nn0 9223 . . . 4  |-  1  e.  NN0
2 3nn0 9225 . . . 4  |-  3  e.  NN0
3 1le3 9161 . . . 4  |-  1  <_  3
4 elfz2nn0 10144 . . . 4  |-  ( 1  e.  ( 0 ... 3 )  <->  ( 1  e.  NN0  /\  3  e.  NN0  /\  1  <_ 
3 ) )
51, 2, 3, 4mpbir3an 1181 . . 3  |-  1  e.  ( 0 ... 3
)
6 fzsplit 10083 . . 3  |-  ( 1  e.  ( 0 ... 3 )  ->  (
0 ... 3 )  =  ( ( 0 ... 1 )  u.  (
( 1  +  1 ) ... 3 ) ) )
75, 6ax-mp 5 . 2  |-  ( 0 ... 3 )  =  ( ( 0 ... 1 )  u.  (
( 1  +  1 ) ... 3 ) )
8 1e0p1 9456 . . . . 5  |-  1  =  ( 0  +  1 )
98oveq2i 5908 . . . 4  |-  ( 0 ... 1 )  =  ( 0 ... (
0  +  1 ) )
10 0z 9295 . . . . 5  |-  0  e.  ZZ
11 fzpr 10109 . . . . 5  |-  ( 0  e.  ZZ  ->  (
0 ... ( 0  +  1 ) )  =  { 0 ,  ( 0  +  1 ) } )
1210, 11ax-mp 5 . . . 4  |-  ( 0 ... ( 0  +  1 ) )  =  { 0 ,  ( 0  +  1 ) }
13 0p1e1 9064 . . . . 5  |-  ( 0  +  1 )  =  1
1413preq2i 3688 . . . 4  |-  { 0 ,  ( 0  +  1 ) }  =  { 0 ,  1 }
159, 12, 143eqtri 2214 . . 3  |-  ( 0 ... 1 )  =  { 0 ,  1 }
16 1p1e2 9067 . . . . 5  |-  ( 1  +  1 )  =  2
17 df-3 9010 . . . . 5  |-  3  =  ( 2  +  1 )
1816, 17oveq12i 5909 . . . 4  |-  ( ( 1  +  1 ) ... 3 )  =  ( 2 ... (
2  +  1 ) )
19 2z 9312 . . . . 5  |-  2  e.  ZZ
20 fzpr 10109 . . . . 5  |-  ( 2  e.  ZZ  ->  (
2 ... ( 2  +  1 ) )  =  { 2 ,  ( 2  +  1 ) } )
2119, 20ax-mp 5 . . . 4  |-  ( 2 ... ( 2  +  1 ) )  =  { 2 ,  ( 2  +  1 ) }
22 2p1e3 9083 . . . . 5  |-  ( 2  +  1 )  =  3
2322preq2i 3688 . . . 4  |-  { 2 ,  ( 2  +  1 ) }  =  { 2 ,  3 }
2418, 21, 233eqtri 2214 . . 3  |-  ( ( 1  +  1 ) ... 3 )  =  { 2 ,  3 }
2515, 24uneq12i 3302 . 2  |-  ( ( 0 ... 1 )  u.  ( ( 1  +  1 ) ... 3 ) )  =  ( { 0 ,  1 }  u.  {
2 ,  3 } )
267, 25eqtri 2210 1  |-  ( 0 ... 3 )  =  ( { 0 ,  1 }  u.  {
2 ,  3 } )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2160    u. cun 3142   {cpr 3608   class class class wbr 4018  (class class class)co 5897   0cc0 7842   1c1 7843    + caddc 7845    <_ cle 8024   2c2 9001   3c3 9002   NN0cn0 9207   ZZcz 9284   ...cfz 10040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-inn 8951  df-2 9009  df-3 9010  df-n0 9208  df-z 9285  df-uz 9560  df-fz 10041
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator