ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmssnn Unicode version

Theorem prmssnn 12066
Description: The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
prmssnn  |-  Prime  C_  NN

Proof of Theorem prmssnn
StepHypRef Expression
1 prmnn 12064 . 2  |-  ( x  e.  Prime  ->  x  e.  NN )
21ssriv 3151 1  |-  Prime  C_  NN
Colors of variables: wff set class
Syntax hints:    C_ wss 3121   NNcn 8878   Primecprime 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-prm 12062
This theorem is referenced by:  prmex  12067  1arith  12319  prminf  12410
  Copyright terms: Public domain W3C validator