ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmssnn Unicode version

Theorem prmssnn 12280
Description: The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
prmssnn  |-  Prime  C_  NN

Proof of Theorem prmssnn
StepHypRef Expression
1 prmnn 12278 . 2  |-  ( x  e.  Prime  ->  x  e.  NN )
21ssriv 3187 1  |-  Prime  C_  NN
Colors of variables: wff set class
Syntax hints:    C_ wss 3157   NNcn 8990   Primecprime 12275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-prm 12276
This theorem is referenced by:  prmex  12281  1arith  12536  prminf  12672
  Copyright terms: Public domain W3C validator