| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmnn | Unicode version | ||
| Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| prmnn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm 12431 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rab 2493 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-prm 12430 |
| This theorem is referenced by: prmz 12433 prmssnn 12434 nprmdvds1 12462 isprm5lem 12463 isprm5 12464 coprm 12466 euclemma 12468 prmdvdsexpr 12472 cncongrprm 12479 phiprmpw 12544 fermltl 12556 prmdiv 12557 prmdiveq 12558 prmdivdiv 12559 m1dvdsndvds 12571 vfermltl 12574 powm2modprm 12575 reumodprminv 12576 modprm0 12577 nnnn0modprm0 12578 modprmn0modprm0 12579 oddprm 12582 nnoddn2prm 12583 prm23lt5 12586 pcpremul 12616 pcdvdsb 12643 pcelnn 12644 pcidlem 12646 pcid 12647 pcdvdstr 12650 pcgcd1 12651 pcprmpw2 12656 dvdsprmpweqnn 12659 dvdsprmpweqle 12660 pcaddlem 12662 pcadd 12663 pcmptcl 12665 pcmpt 12666 pcmpt2 12667 pcfaclem 12672 pcfac 12673 pcbc 12674 expnprm 12676 oddprmdvds 12677 prmpwdvds 12678 pockthlem 12679 pockthg 12680 pockthi 12681 1arith 12690 4sqlem11 12724 4sqlem12 12725 4sqlem13m 12726 4sqlem14 12727 4sqlem17 12730 4sqlem18 12731 4sqlem19 12732 znidom 14419 wilthlem1 15452 dvdsppwf1o 15461 sgmppw 15464 0sgmppw 15465 1sgmprm 15466 mersenne 15469 perfect1 15470 perfect 15473 lgslem1 15477 lgslem4 15480 lgsval 15481 lgsval2lem 15487 lgsvalmod 15496 lgsmod 15503 lgsdirprm 15511 lgsne0 15515 lgsprme0 15519 gausslemma2dlem0c 15528 gausslemma2dlem1a 15535 gausslemma2dlem5a 15542 lgseisenlem1 15547 lgseisenlem2 15548 lgseisenlem3 15549 lgseisenlem4 15550 lgsquadlem1 15554 lgsquadlem3 15556 lgsquad2lem2 15559 lgsquad2 15560 m1lgs 15562 2lgslem1a 15565 2lgslem1c 15567 2lgs 15581 2sqlem3 15594 2sqlem8 15600 |
| Copyright terms: Public domain | W3C validator |