![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prmnn | Unicode version |
Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
prmnn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprm 12123 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rab 2474 df-v 2751 df-un 3145 df-sn 3610 df-pr 3611 df-op 3613 df-br 4016 df-prm 12122 |
This theorem is referenced by: prmz 12125 prmssnn 12126 nprmdvds1 12154 isprm5lem 12155 isprm5 12156 coprm 12158 euclemma 12160 prmdvdsexpr 12164 cncongrprm 12171 phiprmpw 12236 fermltl 12248 prmdiv 12249 prmdiveq 12250 prmdivdiv 12251 m1dvdsndvds 12262 vfermltl 12265 powm2modprm 12266 reumodprminv 12267 modprm0 12268 nnnn0modprm0 12269 modprmn0modprm0 12270 oddprm 12273 nnoddn2prm 12274 prm23lt5 12277 pcpremul 12307 pcdvdsb 12333 pcelnn 12334 pcidlem 12336 pcid 12337 pcdvdstr 12340 pcgcd1 12341 pcprmpw2 12346 dvdsprmpweqnn 12349 dvdsprmpweqle 12350 pcaddlem 12352 pcadd 12353 pcmptcl 12354 pcmpt 12355 pcmpt2 12356 pcfaclem 12361 pcfac 12362 pcbc 12363 expnprm 12365 oddprmdvds 12366 prmpwdvds 12367 pockthlem 12368 pockthg 12369 pockthi 12370 1arith 12379 lgslem1 14754 lgslem4 14757 lgsval 14758 lgsval2lem 14764 lgsvalmod 14773 lgsmod 14780 lgsdirprm 14788 lgsne0 14792 lgsprme0 14796 lgseisenlem1 14803 lgseisenlem2 14804 m1lgs 14805 2sqlem3 14817 2sqlem8 14823 |
Copyright terms: Public domain | W3C validator |