Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prmnn | Unicode version |
Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
prmnn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprm 12037 | . 2 | |
2 | 1 | simplbi 272 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 crab 2447 class class class wbr 3981 c2o 6374 cen 6700 cn 8853 cdvds 11723 cprime 12035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rab 2452 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-br 3982 df-prm 12036 |
This theorem is referenced by: prmz 12039 prmssnn 12040 nprmdvds1 12068 isprm5lem 12069 isprm5 12070 coprm 12072 euclemma 12074 prmdvdsexpr 12078 cncongrprm 12085 phiprmpw 12150 fermltl 12162 prmdiv 12163 prmdiveq 12164 prmdivdiv 12165 m1dvdsndvds 12176 vfermltl 12179 powm2modprm 12180 reumodprminv 12181 modprm0 12182 nnnn0modprm0 12183 modprmn0modprm0 12184 oddprm 12187 nnoddn2prm 12188 prm23lt5 12191 pcpremul 12221 pcdvdsb 12247 pcelnn 12248 pcidlem 12250 pcid 12251 pcdvdstr 12254 pcgcd1 12255 pcprmpw2 12260 dvdsprmpweqnn 12263 dvdsprmpweqle 12264 pcaddlem 12266 pcadd 12267 pcmptcl 12268 pcmpt 12269 pcmpt2 12270 pcfaclem 12275 pcfac 12276 pcbc 12277 expnprm 12279 oddprmdvds 12280 prmpwdvds 12281 pockthlem 12282 pockthg 12283 pockthi 12284 1arith 12293 lgslem1 13501 lgslem4 13504 lgsval 13505 lgsval2lem 13511 lgsvalmod 13520 lgsmod 13527 lgsdirprm 13535 lgsne0 13539 lgsprme0 13543 2sqlem3 13553 2sqlem8 13559 |
Copyright terms: Public domain | W3C validator |