| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmnn | Unicode version | ||
| Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| prmnn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm 12287 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-prm 12286 |
| This theorem is referenced by: prmz 12289 prmssnn 12290 nprmdvds1 12318 isprm5lem 12319 isprm5 12320 coprm 12322 euclemma 12324 prmdvdsexpr 12328 cncongrprm 12335 phiprmpw 12400 fermltl 12412 prmdiv 12413 prmdiveq 12414 prmdivdiv 12415 m1dvdsndvds 12427 vfermltl 12430 powm2modprm 12431 reumodprminv 12432 modprm0 12433 nnnn0modprm0 12434 modprmn0modprm0 12435 oddprm 12438 nnoddn2prm 12439 prm23lt5 12442 pcpremul 12472 pcdvdsb 12499 pcelnn 12500 pcidlem 12502 pcid 12503 pcdvdstr 12506 pcgcd1 12507 pcprmpw2 12512 dvdsprmpweqnn 12515 dvdsprmpweqle 12516 pcaddlem 12518 pcadd 12519 pcmptcl 12521 pcmpt 12522 pcmpt2 12523 pcfaclem 12528 pcfac 12529 pcbc 12530 expnprm 12532 oddprmdvds 12533 prmpwdvds 12534 pockthlem 12535 pockthg 12536 pockthi 12537 1arith 12546 4sqlem11 12580 4sqlem12 12581 4sqlem13m 12582 4sqlem14 12583 4sqlem17 12586 4sqlem18 12587 4sqlem19 12588 znidom 14223 wilthlem1 15226 dvdsppwf1o 15235 sgmppw 15238 0sgmppw 15239 1sgmprm 15240 mersenne 15243 perfect1 15244 perfect 15247 lgslem1 15251 lgslem4 15254 lgsval 15255 lgsval2lem 15261 lgsvalmod 15270 lgsmod 15277 lgsdirprm 15285 lgsne0 15289 lgsprme0 15293 gausslemma2dlem0c 15302 gausslemma2dlem1a 15309 gausslemma2dlem5a 15316 lgseisenlem1 15321 lgseisenlem2 15322 lgseisenlem3 15323 lgseisenlem4 15324 lgsquadlem1 15328 lgsquadlem3 15330 lgsquad2lem2 15333 lgsquad2 15334 m1lgs 15336 2lgslem1a 15339 2lgslem1c 15341 2lgs 15355 2sqlem3 15368 2sqlem8 15374 |
| Copyright terms: Public domain | W3C validator |