ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmnn Unicode version

Theorem prmnn 10886
Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
prmnn  |-  ( P  e.  Prime  ->  P  e.  NN )

Proof of Theorem prmnn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 isprm 10885 . 2  |-  ( P  e.  Prime  <->  ( P  e.  NN  /\  { z  e.  NN  |  z 
||  P }  ~~  2o ) )
21simplbi 268 1  |-  ( P  e.  Prime  ->  P  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1436   {crab 2359   class class class wbr 3814   2oc2o 6110    ~~ cen 6388   NNcn 8334    || cdvds 10590   Primecprime 10883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rab 2364  df-v 2616  df-un 2990  df-sn 3431  df-pr 3432  df-op 3434  df-br 3815  df-prm 10884
This theorem is referenced by:  prmz  10887  prmssnn  10888  nprmdvds1  10915  coprm  10917  euclemma  10919  prmdvdsexpr  10923  cncongrprm  10930  phiprmpw  10992
  Copyright terms: Public domain W3C validator