Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prmnn | Unicode version |
Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
prmnn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprm 12056 | . 2 | |
2 | 1 | simplbi 272 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 crab 2452 class class class wbr 3987 c2o 6387 cen 6714 cn 8871 cdvds 11742 cprime 12054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rab 2457 df-v 2732 df-un 3125 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-prm 12055 |
This theorem is referenced by: prmz 12058 prmssnn 12059 nprmdvds1 12087 isprm5lem 12088 isprm5 12089 coprm 12091 euclemma 12093 prmdvdsexpr 12097 cncongrprm 12104 phiprmpw 12169 fermltl 12181 prmdiv 12182 prmdiveq 12183 prmdivdiv 12184 m1dvdsndvds 12195 vfermltl 12198 powm2modprm 12199 reumodprminv 12200 modprm0 12201 nnnn0modprm0 12202 modprmn0modprm0 12203 oddprm 12206 nnoddn2prm 12207 prm23lt5 12210 pcpremul 12240 pcdvdsb 12266 pcelnn 12267 pcidlem 12269 pcid 12270 pcdvdstr 12273 pcgcd1 12274 pcprmpw2 12279 dvdsprmpweqnn 12282 dvdsprmpweqle 12283 pcaddlem 12285 pcadd 12286 pcmptcl 12287 pcmpt 12288 pcmpt2 12289 pcfaclem 12294 pcfac 12295 pcbc 12296 expnprm 12298 oddprmdvds 12299 prmpwdvds 12300 pockthlem 12301 pockthg 12302 pockthi 12303 1arith 12312 lgslem1 13660 lgslem4 13663 lgsval 13664 lgsval2lem 13670 lgsvalmod 13679 lgsmod 13686 lgsdirprm 13694 lgsne0 13698 lgsprme0 13702 2sqlem3 13712 2sqlem8 13718 |
Copyright terms: Public domain | W3C validator |