| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmnn | Unicode version | ||
| Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| prmnn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm 12546 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rab 2495 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-prm 12545 |
| This theorem is referenced by: prmz 12548 prmssnn 12549 nprmdvds1 12577 isprm5lem 12578 isprm5 12579 coprm 12581 euclemma 12583 prmdvdsexpr 12587 cncongrprm 12594 phiprmpw 12659 fermltl 12671 prmdiv 12672 prmdiveq 12673 prmdivdiv 12674 m1dvdsndvds 12686 vfermltl 12689 powm2modprm 12690 reumodprminv 12691 modprm0 12692 nnnn0modprm0 12693 modprmn0modprm0 12694 oddprm 12697 nnoddn2prm 12698 prm23lt5 12701 pcpremul 12731 pcdvdsb 12758 pcelnn 12759 pcidlem 12761 pcid 12762 pcdvdstr 12765 pcgcd1 12766 pcprmpw2 12771 dvdsprmpweqnn 12774 dvdsprmpweqle 12775 pcaddlem 12777 pcadd 12778 pcmptcl 12780 pcmpt 12781 pcmpt2 12782 pcfaclem 12787 pcfac 12788 pcbc 12789 expnprm 12791 oddprmdvds 12792 prmpwdvds 12793 pockthlem 12794 pockthg 12795 pockthi 12796 1arith 12805 4sqlem11 12839 4sqlem12 12840 4sqlem13m 12841 4sqlem14 12842 4sqlem17 12845 4sqlem18 12846 4sqlem19 12847 znidom 14534 wilthlem1 15567 dvdsppwf1o 15576 sgmppw 15579 0sgmppw 15580 1sgmprm 15581 mersenne 15584 perfect1 15585 perfect 15588 lgslem1 15592 lgslem4 15595 lgsval 15596 lgsval2lem 15602 lgsvalmod 15611 lgsmod 15618 lgsdirprm 15626 lgsne0 15630 lgsprme0 15634 gausslemma2dlem0c 15643 gausslemma2dlem1a 15650 gausslemma2dlem5a 15657 lgseisenlem1 15662 lgseisenlem2 15663 lgseisenlem3 15664 lgseisenlem4 15665 lgsquadlem1 15669 lgsquadlem3 15671 lgsquad2lem2 15674 lgsquad2 15675 m1lgs 15677 2lgslem1a 15680 2lgslem1c 15682 2lgs 15696 2sqlem3 15709 2sqlem8 15715 |
| Copyright terms: Public domain | W3C validator |