| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmnn | Unicode version | ||
| Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| prmnn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm 12464 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rab 2493 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-prm 12463 |
| This theorem is referenced by: prmz 12466 prmssnn 12467 nprmdvds1 12495 isprm5lem 12496 isprm5 12497 coprm 12499 euclemma 12501 prmdvdsexpr 12505 cncongrprm 12512 phiprmpw 12577 fermltl 12589 prmdiv 12590 prmdiveq 12591 prmdivdiv 12592 m1dvdsndvds 12604 vfermltl 12607 powm2modprm 12608 reumodprminv 12609 modprm0 12610 nnnn0modprm0 12611 modprmn0modprm0 12612 oddprm 12615 nnoddn2prm 12616 prm23lt5 12619 pcpremul 12649 pcdvdsb 12676 pcelnn 12677 pcidlem 12679 pcid 12680 pcdvdstr 12683 pcgcd1 12684 pcprmpw2 12689 dvdsprmpweqnn 12692 dvdsprmpweqle 12693 pcaddlem 12695 pcadd 12696 pcmptcl 12698 pcmpt 12699 pcmpt2 12700 pcfaclem 12705 pcfac 12706 pcbc 12707 expnprm 12709 oddprmdvds 12710 prmpwdvds 12711 pockthlem 12712 pockthg 12713 pockthi 12714 1arith 12723 4sqlem11 12757 4sqlem12 12758 4sqlem13m 12759 4sqlem14 12760 4sqlem17 12763 4sqlem18 12764 4sqlem19 12765 znidom 14452 wilthlem1 15485 dvdsppwf1o 15494 sgmppw 15497 0sgmppw 15498 1sgmprm 15499 mersenne 15502 perfect1 15503 perfect 15506 lgslem1 15510 lgslem4 15513 lgsval 15514 lgsval2lem 15520 lgsvalmod 15529 lgsmod 15536 lgsdirprm 15544 lgsne0 15548 lgsprme0 15552 gausslemma2dlem0c 15561 gausslemma2dlem1a 15568 gausslemma2dlem5a 15575 lgseisenlem1 15580 lgseisenlem2 15581 lgseisenlem3 15582 lgseisenlem4 15583 lgsquadlem1 15587 lgsquadlem3 15589 lgsquad2lem2 15592 lgsquad2 15593 m1lgs 15595 2lgslem1a 15598 2lgslem1c 15600 2lgs 15614 2sqlem3 15627 2sqlem8 15633 |
| Copyright terms: Public domain | W3C validator |