| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmnn | Unicode version | ||
| Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| prmnn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm 12631 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-prm 12630 |
| This theorem is referenced by: prmz 12633 prmssnn 12634 nprmdvds1 12662 isprm5lem 12663 isprm5 12664 coprm 12666 euclemma 12668 prmdvdsexpr 12672 cncongrprm 12679 phiprmpw 12744 fermltl 12756 prmdiv 12757 prmdiveq 12758 prmdivdiv 12759 m1dvdsndvds 12771 vfermltl 12774 powm2modprm 12775 reumodprminv 12776 modprm0 12777 nnnn0modprm0 12778 modprmn0modprm0 12779 oddprm 12782 nnoddn2prm 12783 prm23lt5 12786 pcpremul 12816 pcdvdsb 12843 pcelnn 12844 pcidlem 12846 pcid 12847 pcdvdstr 12850 pcgcd1 12851 pcprmpw2 12856 dvdsprmpweqnn 12859 dvdsprmpweqle 12860 pcaddlem 12862 pcadd 12863 pcmptcl 12865 pcmpt 12866 pcmpt2 12867 pcfaclem 12872 pcfac 12873 pcbc 12874 expnprm 12876 oddprmdvds 12877 prmpwdvds 12878 pockthlem 12879 pockthg 12880 pockthi 12881 1arith 12890 4sqlem11 12924 4sqlem12 12925 4sqlem13m 12926 4sqlem14 12927 4sqlem17 12930 4sqlem18 12931 4sqlem19 12932 znidom 14621 wilthlem1 15654 dvdsppwf1o 15663 sgmppw 15666 0sgmppw 15667 1sgmprm 15668 mersenne 15671 perfect1 15672 perfect 15675 lgslem1 15679 lgslem4 15682 lgsval 15683 lgsval2lem 15689 lgsvalmod 15698 lgsmod 15705 lgsdirprm 15713 lgsne0 15717 lgsprme0 15721 gausslemma2dlem0c 15730 gausslemma2dlem1a 15737 gausslemma2dlem5a 15744 lgseisenlem1 15749 lgseisenlem2 15750 lgseisenlem3 15751 lgseisenlem4 15752 lgsquadlem1 15756 lgsquadlem3 15758 lgsquad2lem2 15761 lgsquad2 15762 m1lgs 15764 2lgslem1a 15767 2lgslem1c 15769 2lgs 15783 2sqlem3 15796 2sqlem8 15802 |
| Copyright terms: Public domain | W3C validator |