| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmnn | Unicode version | ||
| Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| prmnn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm 12302 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-prm 12301 |
| This theorem is referenced by: prmz 12304 prmssnn 12305 nprmdvds1 12333 isprm5lem 12334 isprm5 12335 coprm 12337 euclemma 12339 prmdvdsexpr 12343 cncongrprm 12350 phiprmpw 12415 fermltl 12427 prmdiv 12428 prmdiveq 12429 prmdivdiv 12430 m1dvdsndvds 12442 vfermltl 12445 powm2modprm 12446 reumodprminv 12447 modprm0 12448 nnnn0modprm0 12449 modprmn0modprm0 12450 oddprm 12453 nnoddn2prm 12454 prm23lt5 12457 pcpremul 12487 pcdvdsb 12514 pcelnn 12515 pcidlem 12517 pcid 12518 pcdvdstr 12521 pcgcd1 12522 pcprmpw2 12527 dvdsprmpweqnn 12530 dvdsprmpweqle 12531 pcaddlem 12533 pcadd 12534 pcmptcl 12536 pcmpt 12537 pcmpt2 12538 pcfaclem 12543 pcfac 12544 pcbc 12545 expnprm 12547 oddprmdvds 12548 prmpwdvds 12549 pockthlem 12550 pockthg 12551 pockthi 12552 1arith 12561 4sqlem11 12595 4sqlem12 12596 4sqlem13m 12597 4sqlem14 12598 4sqlem17 12601 4sqlem18 12602 4sqlem19 12603 znidom 14289 wilthlem1 15300 dvdsppwf1o 15309 sgmppw 15312 0sgmppw 15313 1sgmprm 15314 mersenne 15317 perfect1 15318 perfect 15321 lgslem1 15325 lgslem4 15328 lgsval 15329 lgsval2lem 15335 lgsvalmod 15344 lgsmod 15351 lgsdirprm 15359 lgsne0 15363 lgsprme0 15367 gausslemma2dlem0c 15376 gausslemma2dlem1a 15383 gausslemma2dlem5a 15390 lgseisenlem1 15395 lgseisenlem2 15396 lgseisenlem3 15397 lgseisenlem4 15398 lgsquadlem1 15402 lgsquadlem3 15404 lgsquad2lem2 15407 lgsquad2 15408 m1lgs 15410 2lgslem1a 15413 2lgslem1c 15415 2lgs 15429 2sqlem3 15442 2sqlem8 15448 |
| Copyright terms: Public domain | W3C validator |