| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > prmnn | Unicode version | ||
| Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| prmnn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isprm 12277 | 
. 2
 | |
| 2 | 1 | simplbi 274 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-prm 12276 | 
| This theorem is referenced by: prmz 12279 prmssnn 12280 nprmdvds1 12308 isprm5lem 12309 isprm5 12310 coprm 12312 euclemma 12314 prmdvdsexpr 12318 cncongrprm 12325 phiprmpw 12390 fermltl 12402 prmdiv 12403 prmdiveq 12404 prmdivdiv 12405 m1dvdsndvds 12417 vfermltl 12420 powm2modprm 12421 reumodprminv 12422 modprm0 12423 nnnn0modprm0 12424 modprmn0modprm0 12425 oddprm 12428 nnoddn2prm 12429 prm23lt5 12432 pcpremul 12462 pcdvdsb 12489 pcelnn 12490 pcidlem 12492 pcid 12493 pcdvdstr 12496 pcgcd1 12497 pcprmpw2 12502 dvdsprmpweqnn 12505 dvdsprmpweqle 12506 pcaddlem 12508 pcadd 12509 pcmptcl 12511 pcmpt 12512 pcmpt2 12513 pcfaclem 12518 pcfac 12519 pcbc 12520 expnprm 12522 oddprmdvds 12523 prmpwdvds 12524 pockthlem 12525 pockthg 12526 pockthi 12527 1arith 12536 4sqlem11 12570 4sqlem12 12571 4sqlem13m 12572 4sqlem14 12573 4sqlem17 12576 4sqlem18 12577 4sqlem19 12578 znidom 14213 wilthlem1 15216 dvdsppwf1o 15225 sgmppw 15228 0sgmppw 15229 1sgmprm 15230 mersenne 15233 perfect1 15234 perfect 15237 lgslem1 15241 lgslem4 15244 lgsval 15245 lgsval2lem 15251 lgsvalmod 15260 lgsmod 15267 lgsdirprm 15275 lgsne0 15279 lgsprme0 15283 gausslemma2dlem0c 15292 gausslemma2dlem1a 15299 gausslemma2dlem5a 15306 lgseisenlem1 15311 lgseisenlem2 15312 lgseisenlem3 15313 lgseisenlem4 15314 lgsquadlem1 15318 lgsquadlem3 15320 lgsquad2lem2 15323 lgsquad2 15324 m1lgs 15326 2lgslem1a 15329 2lgslem1c 15331 2lgs 15345 2sqlem3 15358 2sqlem8 15364 | 
| Copyright terms: Public domain | W3C validator |