HomeHome Intuitionistic Logic Explorer
Theorem List (p. 122 of 158)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12101-12200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremflodddiv4 12101 The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.)
 |-  ( ( M  e.  ZZ  /\  N  =  ( ( 2  x.  M )  +  1 )
 )  ->  ( |_ `  ( N  /  4
 ) )  =  if ( 2  ||  M ,  ( M  /  2
 ) ,  ( ( M  -  1 ) 
 /  2 ) ) )
 
Theoremfldivndvdslt 12102 The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021.)
 |-  ( ( K  e.  ZZ  /\  ( L  e.  ZZ  /\  L  =/=  0
 )  /\  -.  L  ||  K )  ->  ( |_ `  ( K  /  L ) )  <  ( K 
 /  L ) )
 
Theoremflodddiv4lt 12103 The floor of an odd number divided by 4 is less than the odd number divided by 4. (Contributed by AV, 4-Jul-2021.)
 |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( |_ `  ( N  /  4
 ) )  <  ( N  /  4 ) )
 
Theoremflodddiv4t2lthalf 12104 The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.)
 |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( ( |_ `  ( N 
 /  4 ) )  x.  2 )  < 
 ( N  /  2
 ) )
 
5.1.4  Bit sequences
 
Syntaxcbits 12105 Define the binary bits of an integer.
 class bits
 
Definitiondf-bits 12106* Define the binary bits of an integer. The expression  M  e.  (bits `  N ) means that the  M-th bit of  N is 1 (and its negation means the bit is 0). (Contributed by Mario Carneiro, 4-Sep-2016.)
 |- bits  =  ( n  e.  ZZ  |->  { m  e.  NN0  |  -.  2  ||  ( |_ `  ( n  /  (
 2 ^ m ) ) ) } )
 
Theorembitsfval 12107* Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( N  e.  ZZ  ->  (bits `  N )  =  { m  e.  NN0  |  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) }
 )
 
Theorembitsval 12108 Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( M  e.  (bits `  N )  <->  ( N  e.  ZZ  /\  M  e.  NN0  /\ 
 -.  2  ||  ( |_ `  ( N  /  ( 2 ^ M ) ) ) ) )
 
Theorembitsval2 12109 Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  ->  ( M  e.  (bits `  N )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ M ) ) ) ) )
 
Theorembitsss 12110 The set of bits of an integer is a subset of  NN0. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  (bits `  N )  C_ 
 NN0
 
Theorembitsf 12111 The bits function is a function from integers to subsets of nonnegative integers. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |- bits : ZZ --> ~P NN0
 
Theorembits0 12112 Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( N  e.  ZZ  ->  ( 0  e.  (bits `  N )  <->  -.  2  ||  N ) )
 
Theorembits0e 12113 The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( N  e.  ZZ  ->  -.  0  e.  (bits `  ( 2  x.  N ) ) )
 
Theorembits0o 12114 The zeroth bit of an odd number is one. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( N  e.  ZZ  ->  0  e.  (bits `  ( ( 2  x.  N )  +  1 ) ) )
 
Theorembitsp1 12115 The  M  +  1-th bit of  N is the  M-th bit of  |_ ( N  / 
2 ). (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  ->  ( ( M  +  1 )  e.  (bits `  N )  <->  M  e.  (bits `  ( |_ `  ( N  / 
 2 ) ) ) ) )
 
Theorembitsp1e 12116 The  M  +  1-th bit of  2 N is the  M-th bit of  N. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  ->  ( ( M  +  1 )  e.  (bits `  ( 2  x.  N ) )  <->  M  e.  (bits `  N ) ) )
 
Theorembitsp1o 12117 The  M  +  1-th bit of  2 N  +  1 is the  M-th bit of  N. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  ->  ( ( M  +  1 )  e.  (bits `  ( (
 2  x.  N )  +  1 ) )  <->  M  e.  (bits `  N ) ) )
 
Theorembitsfzolem 12118* Lemma for bitsfzo 12119. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 1-Oct-2020.)
 |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  (bits `  N )  C_  (
 0..^ M ) )   &    |-  S  = inf ( { n  e.  NN0  |  N  <  ( 2 ^ n ) } ,  RR ,  <  )   =>    |-  ( ph  ->  N  e.  ( 0..^ ( 2 ^ M ) ) )
 
Theorembitsfzo 12119 The bits of a number are all at positions less than  M iff the number is nonnegative and less than  2 ^ M. (Contributed by Mario Carneiro, 5-Sep-2016.) (Proof shortened by AV, 1-Oct-2020.)
 |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  ->  ( N  e.  ( 0..^ ( 2 ^ M ) )  <->  (bits `  N )  C_  ( 0..^ M ) ) )
 
5.1.5  The greatest common divisor operator
 
Syntaxcgcd 12120 Extend the definition of a class to include the greatest common divisor operator.
 class  gcd
 
Definitiondf-gcd 12121* Define the  gcd operator. For example,  ( -u 6  gcd  9 )  =  3 (ex-gcd 15377). (Contributed by Paul Chapman, 21-Mar-2011.)
 |- 
 gcd  =  ( x  e.  ZZ ,  y  e. 
 ZZ  |->  if ( ( x  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n  ||  x  /\  n  ||  y ) } ,  RR ,  <  ) ) )
 
Theoremgcdmndc 12122 Decidablity lemma used in various proofs related to  gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID 
 ( M  =  0 
 /\  N  =  0 ) )
 
Theoremdvdsbnd 12123* There is an upper bound to the divisors of a nonzero integer. (Contributed by Jim Kingdon, 11-Dec-2021.)
 |-  ( ( A  e.  ZZ  /\  A  =/=  0
 )  ->  E. n  e.  NN  A. m  e.  ( ZZ>= `  n )  -.  m  ||  A )
 
Theoremgcdsupex 12124* Existence of the supremum used in defining  gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
 |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ( n  ||  X  /\  n  ||  Y ) }  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  { n  e.  ZZ  |  ( n  ||  X  /\  n  ||  Y ) } y  <  z
 ) ) )
 
Theoremgcdsupcl 12125* Closure of the supremum used in defining  gcd. A lemma for gcdval 12126 and gcdn0cl 12129. (Contributed by Jim Kingdon, 11-Dec-2021.)
 |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  sup ( { n  e.  ZZ  |  ( n  ||  X  /\  n  ||  Y ) } ,  RR ,  <  )  e.  NN )
 
Theoremgcdval 12126* The value of the  gcd operator.  ( M  gcd  N ) is the greatest common divisor of  M and  N. If  M and  N are both  0, the result is defined conventionally as  0. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 10-Nov-2013.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  =  if (
 ( M  =  0 
 /\  N  =  0 ) ,  0 , 
 sup ( { n  e.  ZZ  |  ( n 
 ||  M  /\  n  ||  N ) } ,  RR ,  <  ) ) )
 
Theoremgcd0val 12127 The value, by convention, of the 
gcd operator when both operands are 0. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( 0  gcd  0
 )  =  0
 
Theoremgcdn0val 12128* The value of the  gcd operator when at least one operand is nonzero. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N ) } ,  RR ,  <  ) )
 
Theoremgcdn0cl 12129 Closure of the  gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  e.  NN )
 
Theoremgcddvds 12130 The gcd of two integers divides each of them. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M 
 gcd  N )  ||  M  /\  ( M  gcd  N )  ||  N ) )
 
Theoremdvdslegcd 12131 An integer which divides both operands of the  gcd operator is bounded by it. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 )
 )  ->  ( ( K  ||  M  /\  K  ||  N )  ->  K  <_  ( M  gcd  N ) ) )
 
Theoremnndvdslegcd 12132 A positive integer which divides both positive operands of the  gcd operator is bounded by it. (Contributed by AV, 9-Aug-2020.)
 |-  ( ( K  e.  NN  /\  M  e.  NN  /\  N  e.  NN )  ->  ( ( K  ||  M  /\  K  ||  N )  ->  K  <_  ( M  gcd  N ) ) )
 
Theoremgcdcl 12133 Closure of the  gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  e.  NN0 )
 
Theoremgcdnncl 12134 Closure of the  gcd operator. (Contributed by Thierry Arnoux, 2-Feb-2020.)
 |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N )  e.  NN )
 
Theoremgcdcld 12135 Closure of the  gcd operator. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( M  gcd  N )  e.  NN0 )
 
Theoremgcd2n0cl 12136 Closure of the  gcd operator if the second operand is not 0. (Contributed by AV, 10-Jul-2021.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  ( M  gcd  N )  e.  NN )
 
Theoremzeqzmulgcd 12137* An integer is the product of an integer and the gcd of it and another integer. (Contributed by AV, 11-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. n  e.  ZZ  A  =  ( n  x.  ( A  gcd  B ) ) )
 
Theoremdivgcdz 12138 An integer divided by the gcd of it and a nonzero integer is an integer. (Contributed by AV, 11-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 ) 
 ->  ( A  /  ( A  gcd  B ) )  e.  ZZ )
 
Theoremgcdf 12139 Domain and codomain of the  gcd operator. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 16-Nov-2013.)
 |- 
 gcd  : ( ZZ  X.  ZZ ) --> NN0
 
Theoremgcdcom 12140 The  gcd operator is commutative. Theorem 1.4(a) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  =  ( N 
 gcd  M ) )
 
Theoremgcdcomd 12141 The  gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( M  gcd  N )  =  ( N  gcd  M ) )
 
Theoremdivgcdnn 12142 A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021.)
 |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( A  /  ( A  gcd  B ) )  e.  NN )
 
Theoremdivgcdnnr 12143 A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021.)
 |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( A  /  ( B  gcd  A ) )  e.  NN )
 
Theoremgcdeq0 12144 The gcd of two integers is zero iff they are both zero. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M 
 gcd  N )  =  0  <-> 
 ( M  =  0 
 /\  N  =  0 ) ) )
 
Theoremgcdn0gt0 12145 The gcd of two integers is positive (nonzero) iff they are not both zero. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  <->  0  <  ( M  gcd  N ) ) )
 
Theoremgcd0id 12146 The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( N  e.  ZZ  ->  ( 0  gcd  N )  =  ( abs `  N ) )
 
Theoremgcdid0 12147 The gcd of an integer and 0 is the integer's absolute value. Theorem 1.4(d)2 in [ApostolNT] p. 16. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( N  e.  ZZ  ->  ( N  gcd  0
 )  =  ( abs `  N ) )
 
Theoremnn0gcdid0 12148 The gcd of a nonnegative integer with 0 is itself. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( N  e.  NN0  ->  ( N  gcd  0 )  =  N )
 
Theoremgcdneg 12149 Negating one operand of the  gcd operator does not alter the result. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  -u N )  =  ( M  gcd  N ) )
 
Theoremneggcd 12150 Negating one operand of the  gcd operator does not alter the result. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u M  gcd  N )  =  ( M  gcd  N ) )
 
Theoremgcdaddm 12151 Adding a multiple of one operand of the  gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  =  ( M  gcd  ( N  +  ( K  x.  M ) ) ) )
 
Theoremgcdadd 12152 The GCD of two numbers is the same as the GCD of the left and their sum. (Contributed by Scott Fenton, 20-Apr-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  =  ( M 
 gcd  ( N  +  M ) ) )
 
Theoremgcdid 12153 The gcd of a number and itself is its absolute value. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( N  e.  ZZ  ->  ( N  gcd  N )  =  ( abs `  N ) )
 
Theoremgcd1 12154 The gcd of a number with 1 is 1. Theorem 1.4(d)1 in [ApostolNT] p. 16. (Contributed by Mario Carneiro, 19-Feb-2014.)
 |-  ( M  e.  ZZ  ->  ( M  gcd  1
 )  =  1 )
 
Theoremgcdabs 12155 The gcd of two integers is the same as that of their absolute values. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M )  gcd  ( abs `  N ) )  =  ( M  gcd  N ) )
 
Theoremgcdabs1 12156  gcd of the absolute value of the first operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( abs `  N )  gcd  M )  =  ( N  gcd  M ) )
 
Theoremgcdabs2 12157  gcd of the absolute value of the second operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  gcd  ( abs `  M )
 )  =  ( N 
 gcd  M ) )
 
Theoremmodgcd 12158 The gcd remains unchanged if one operand is replaced with its remainder modulo the other. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M 
 mod  N )  gcd  N )  =  ( M  gcd  N ) )
 
Theorem1gcd 12159 The GCD of one and an integer is one. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( M  e.  ZZ  ->  ( 1  gcd  M )  =  1 )
 
Theoremgcdmultipled 12160 The greatest common divisor of a nonnegative integer  M and a multiple of it is  M itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( M  gcd  ( N  x.  M ) )  =  M )
 
Theoremdvdsgcdidd 12161 The greatest common divisor of a positive integer and another integer it divides is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  M  ||  N )   =>    |-  ( ph  ->  ( M  gcd  N )  =  M )
 
Theorem6gcd4e2 12162 The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used:  ( 6  gcd  4 )  =  ( ( 4  +  2 )  gcd  4 )  =  ( 2  gcd  4 ) and  ( 2  gcd  4 )  =  ( 2  gcd  ( 2  +  2 ) )  =  ( 2  gcd  2 )  =  2. (Contributed by AV, 27-Aug-2020.)
 |-  ( 6  gcd  4
 )  =  2
 
5.1.6  Bézout's identity
 
Theorembezoutlemnewy 12163* Lemma for Bézout's identity. The is-bezout predicate holds for  ( y  mod 
W ). (Contributed by Jim Kingdon, 6-Jan-2022.)
 |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )   &    |-  ( th  ->  A  e.  NN0 )   &    |-  ( th  ->  B  e.  NN0 )   &    |-  ( th  ->  W  e.  NN )   &    |-  ( th  ->  [ y  /  r ] ph )   &    |-  ( th  ->  y  e.  NN0 )   &    |-  ( th  ->  [. W  /  r ]. ph )   =>    |-  ( th  ->  [. ( y  mod  W )  /  r ]. ph )
 
Theorembezoutlemstep 12164* Lemma for Bézout's identity. This is the induction step for the proof by induction. (Contributed by Jim Kingdon, 3-Jan-2022.)
 |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )   &    |-  ( th  ->  A  e.  NN0 )   &    |-  ( th  ->  B  e.  NN0 )   &    |-  ( th  ->  W  e.  NN )   &    |-  ( th  ->  [ y  /  r ] ph )   &    |-  ( th  ->  y  e.  NN0 )   &    |-  ( th  ->  [. W  /  r ]. ph )   &    |-  ( ps 
 <-> 
 A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) ) )   &    |-  ( ( th  /\  [. ( y  mod  W )  /  r ]. ph )  ->  E. r  e.  NN0  ( [. ( y  mod  W )  /  x ]. [. W  /  y ]. ps  /\  ph ) )   &    |-  F/ x th   &    |-  F/ r th   =>    |-  ( th  ->  E. r  e.  NN0  ( [. W  /  x ].
 ps  /\  ph ) )
 
Theorembezoutlemmain 12165* Lemma for Bézout's identity. This is the main result which we prove by induction and which represents the application of the Extended Euclidean algorithm. (Contributed by Jim Kingdon, 30-Dec-2021.)
 |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )   &    |-  ( ps  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) ) )   &    |-  ( th  ->  A  e.  NN0 )   &    |-  ( th  ->  B  e.  NN0 )   =>    |-  ( th  ->  A. x  e.  NN0  ( [ x  /  r ] ph  ->  A. y  e.  NN0  ( [ y  /  r ] ph  ->  E. r  e.  NN0  ( ps  /\  ph ) ) ) )
 
Theorembezoutlema 12166* Lemma for Bézout's identity. The is-bezout condition is satisfied by  A. (Contributed by Jim Kingdon, 30-Dec-2021.)
 |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )   &    |-  ( th  ->  A  e.  NN0 )   &    |-  ( th  ->  B  e.  NN0 )   =>    |-  ( th  ->  [. A  /  r ]. ph )
 
Theorembezoutlemb 12167* Lemma for Bézout's identity. The is-bezout condition is satisfied by  B. (Contributed by Jim Kingdon, 30-Dec-2021.)
 |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )   &    |-  ( th  ->  A  e.  NN0 )   &    |-  ( th  ->  B  e.  NN0 )   =>    |-  ( th  ->  [. B  /  r ]. ph )
 
Theorembezoutlemex 12168* Lemma for Bézout's identity. Existence of a number which we will later show to be the greater common divisor and its decomposition into cofactors. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jan-2022.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) 
 /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
 
Theorembezoutlemzz 12169* Lemma for Bézout's identity. Like bezoutlemex 12168 but where ' z ' is any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) 
 /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
 
Theorembezoutlemaz 12170* Lemma for Bézout's identity. Like bezoutlemzz 12169 but where ' A ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) 
 /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
 
Theorembezoutlembz 12171* Lemma for Bézout's identity. Like bezoutlemaz 12170 but where ' B ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) 
 /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
 
Theorembezoutlembi 12172* Lemma for Bézout's identity. Like bezoutlembz 12171 but the greatest common divisor condition is a biconditional, not just an implication. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e. 
 ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
 
Theorembezoutlemmo 12173* Lemma for Bézout's identity. There is at most one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  D  e.  NN0 )   &    |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D 
 <->  ( z  ||  A  /\  z  ||  B ) ) )   &    |-  ( ph  ->  E  e.  NN0 )   &    |-  ( ph  ->  A. z  e.  ZZ  (
 z  ||  E  <->  ( z  ||  A  /\  z  ||  B ) ) )   =>    |-  ( ph  ->  D  =  E )
 
Theorembezoutlemeu 12174* Lemma for Bézout's identity. There is exactly one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  D  e.  NN0 )   &    |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D 
 <->  ( z  ||  A  /\  z  ||  B ) ) )   =>    |-  ( ph  ->  E! d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
 <->  ( z  ||  A  /\  z  ||  B ) ) )
 
Theorembezoutlemle 12175* Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the largest number which divides both  A and  B. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  D  e.  NN0 )   &    |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D 
 <->  ( z  ||  A  /\  z  ||  B ) ) )   &    |-  ( ph  ->  -.  ( A  =  0 
 /\  B  =  0 ) )   =>    |-  ( ph  ->  A. z  e.  ZZ  ( ( z 
 ||  A  /\  z  ||  B )  ->  z  <_  D ) )
 
Theorembezoutlemsup 12176* Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the supremum of divisors of both  A and  B. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  D  e.  NN0 )   &    |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D 
 <->  ( z  ||  A  /\  z  ||  B ) ) )   &    |-  ( ph  ->  -.  ( A  =  0 
 /\  B  =  0 ) )   =>    |-  ( ph  ->  D  =  sup ( { z  e.  ZZ  |  ( z 
 ||  A  /\  z  ||  B ) } ,  RR ,  <  ) )
 
Theoremdfgcd3 12177* Alternate definition of the  gcd operator. (Contributed by Jim Kingdon, 31-Dec-2021.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  =  ( iota_ d  e.  NN0  A. z  e. 
 ZZ  ( z  ||  d 
 <->  ( z  ||  M  /\  z  ||  N ) ) ) )
 
Theorembezout 12178* Bézout's identity: For any integers  A and 
B, there are integers  x ,  y such that  ( A  gcd  B )  =  A  x.  x  +  B  x.  y. This is Metamath 100 proof #60.

The proof is constructive, in the sense that it applies the Extended Euclidian Algorithm to constuct a number which can be shown to be  ( A  gcd  B ) and which satisfies the rest of the theorem. In the presence of excluded middle, it is common to prove Bézout's identity by taking the smallest number which satisfies the Bézout condition, and showing it is the greatest common divisor. But we do not have the ability to show that number exists other than by providing a way to determine it. (Contributed by Mario Carneiro, 22-Feb-2014.)

 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( A  gcd  B )  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )
 
Theoremdvdsgcd 12179 An integer which divides each of two others also divides their gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 30-May-2014.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  gcd  N ) ) )
 
Theoremdvdsgcdb 12180 Biconditional form of dvdsgcd 12179. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  ||  M  /\  K  ||  N ) 
 <->  K  ||  ( M  gcd  N ) ) )
 
Theoremdfgcd2 12181* Alternate definition of the  gcd operator, see definition in [ApostolNT] p. 15. (Contributed by AV, 8-Aug-2021.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( D  =  ( M  gcd  N )  <-> 
 ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  ( ( e  ||  M  /\  e  ||  N )  ->  e  ||  D ) ) ) )
 
Theoremgcdass 12182 Associative law for  gcd operator. Theorem 1.4(b) in [ApostolNT] p. 16. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( N  gcd  M )  gcd  P )  =  ( N  gcd  ( M  gcd  P ) ) )
 
Theoremmulgcd 12183 Distribute multiplication by a nonnegative integer over gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 30-May-2014.)
 |-  ( ( K  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  gcd  ( K  x.  N ) )  =  ( K  x.  ( M  gcd  N ) ) )
 
Theoremabsmulgcd 12184 Distribute absolute value of multiplication over gcd. Theorem 1.4(c) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  gcd  ( K  x.  N ) )  =  ( abs `  ( K  x.  ( M  gcd  N ) ) ) )
 
Theoremmulgcdr 12185 Reverse distribution law for the 
gcd operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN0 )  ->  ( ( A  x.  C )  gcd  ( B  x.  C ) )  =  ( ( A 
 gcd  B )  x.  C ) )
 
Theoremgcddiv 12186 Division law for GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  ( C 
 ||  A  /\  C  ||  B ) )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A 
 /  C )  gcd  ( B  /  C ) ) )
 
Theoremgcdmultiple 12187 The GCD of a multiple of a number is the number itself. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  ( M  x.  N ) )  =  M )
 
Theoremgcdmultiplez 12188 Extend gcdmultiple 12187 so  N can be an integer. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N ) )  =  M )
 
Theoremgcdzeq 12189 A positive integer  A is equal to its gcd with an integer  B if and only if  A divides  B. Generalization of gcdeq 12190. (Contributed by AV, 1-Jul-2020.)
 |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( ( A 
 gcd  B )  =  A  <->  A 
 ||  B ) )
 
Theoremgcdeq 12190  A is equal to its gcd with  B if and only if  A divides  B. (Contributed by Mario Carneiro, 23-Feb-2014.) (Proof shortened by AV, 8-Aug-2021.)
 |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A 
 gcd  B )  =  A  <->  A 
 ||  B ) )
 
Theoremdvdssqim 12191 Unidirectional form of dvdssq 12198. (Contributed by Scott Fenton, 19-Apr-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( M ^
 2 )  ||  ( N ^ 2 ) ) )
 
Theoremdvdsmulgcd 12192 Relationship between the order of an element and that of a multiple. (a divisibility equivalent). (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  ||  ( B  x.  C ) 
 <->  A  ||  ( B  x.  ( C  gcd  A ) ) ) )
 
Theoremrpmulgcd 12193 If  K and  M are relatively prime, then the GCD of  K and  M  x.  N is the GCD of  K and  N. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( K  e.  NN  /\  M  e.  NN  /\  N  e.  NN )  /\  ( K 
 gcd  M )  =  1 )  ->  ( K  gcd  ( M  x.  N ) )  =  ( K  gcd  N ) )
 
Theoremrplpwr 12194 If  A and  B are relatively prime, then so are  A ^ N and  B. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( A  e.  NN  /\  B  e.  NN  /\  N  e.  NN )  ->  ( ( A  gcd  B )  =  1  ->  ( ( A ^ N )  gcd  B )  =  1 ) )
 
Theoremrppwr 12195 If  A and  B are relatively prime, then so are  A ^ N and  B ^ N. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( A  e.  NN  /\  B  e.  NN  /\  N  e.  NN )  ->  ( ( A  gcd  B )  =  1  ->  ( ( A ^ N )  gcd  ( B ^ N ) )  =  1 ) )
 
Theoremsqgcd 12196 Square distributes over gcd. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( ( M 
 gcd  N ) ^ 2
 )  =  ( ( M ^ 2 ) 
 gcd  ( N ^
 2 ) ) )
 
Theoremdvdssqlem 12197 Lemma for dvdssq 12198. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  ||  N 
 <->  ( M ^ 2
 )  ||  ( N ^ 2 ) ) )
 
Theoremdvdssq 12198 Two numbers are divisible iff their squares are. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  ( M ^ 2
 )  ||  ( N ^ 2 ) ) )
 
Theorembezoutr 12199 Partial converse to bezout 12178. Existence of a linear combination does not set the GCD, but it does upper bound it. (Contributed by Stefan O'Rear, 23-Sep-2014.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  ->  ( A  gcd  B ) 
 ||  ( ( A  x.  X )  +  ( B  x.  Y ) ) )
 
Theorembezoutr1 12200 Converse of bezout 12178 for when the greater common divisor is one (sufficient condition for relative primality). (Contributed by Stefan O'Rear, 23-Sep-2014.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  ->  ( ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1  ->  ( A  gcd  B )  =  1 )
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15728
  Copyright terms: Public domain < Previous  Next >