HomeHome Intuitionistic Logic Explorer
Theorem List (p. 122 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12101-12200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdivalglemqt 12101 Lemma for divalg 12106. The  Q  =  T case involved in showing uniqueness. (Contributed by Jim Kingdon, 5-Dec-2021.)
 |-  ( ph  ->  D  e.  ZZ )   &    |-  ( ph  ->  R  e.  ZZ )   &    |-  ( ph  ->  S  e.  ZZ )   &    |-  ( ph  ->  Q  e.  ZZ )   &    |-  ( ph  ->  T  e.  ZZ )   &    |-  ( ph  ->  Q  =  T )   &    |-  ( ph  ->  (
 ( Q  x.  D )  +  R )  =  ( ( T  x.  D )  +  S ) )   =>    |-  ( ph  ->  R  =  S )
 
Theoremdivalglemnqt 12102 Lemma for divalg 12106. The  Q  <  T case involved in showing uniqueness. (Contributed by Jim Kingdon, 4-Dec-2021.)
 |-  ( ph  ->  D  e.  NN )   &    |-  ( ph  ->  R  e.  ZZ )   &    |-  ( ph  ->  S  e.  ZZ )   &    |-  ( ph  ->  Q  e.  ZZ )   &    |-  ( ph  ->  T  e.  ZZ )   &    |-  ( ph  ->  0  <_  S )   &    |-  ( ph  ->  R  <  D )   &    |-  ( ph  ->  ( ( Q  x.  D )  +  R )  =  ( ( T  x.  D )  +  S ) )   =>    |-  ( ph  ->  -.  Q  <  T )
 
Theoremdivalglemeunn 12103* Lemma for divalg 12106. Uniqueness for a positive denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e. 
 ZZ  E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r
 ) ) )
 
Theoremdivalglemex 12104* Lemma for divalg 12106. The quotient and remainder exist. (Contributed by Jim Kingdon, 30-Nov-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 ) 
 ->  E. r  e.  ZZ  E. q  e.  ZZ  (
 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r )
 ) )
 
Theoremdivalglemeuneg 12105* Lemma for divalg 12106. Uniqueness for a negative denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 ) 
 ->  E! r  e.  ZZ  E. q  e.  ZZ  (
 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r )
 ) )
 
Theoremdivalg 12106* The division algorithm (theorem). Dividing an integer  N by a nonzero integer  D produces a (unique) quotient  q and a unique remainder  0  <_  r  <  ( abs `  D
). Theorem 1.14 in [ApostolNT] p. 19. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 ) 
 ->  E! r  e.  ZZ  E. q  e.  ZZ  (
 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r )
 ) )
 
Theoremdivalgb 12107* Express the division algorithm as stated in divalg 12106 in terms of  ||. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 ) 
 ->  ( E! r  e. 
 ZZ  E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r
 ) )  <->  E! r  e.  NN0  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r
 ) ) ) )
 
Theoremdivalg2 12108* The division algorithm (theorem) for a positive divisor. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e. 
 NN0  ( r  <  D  /\  D  ||  ( N  -  r ) ) )
 
Theoremdivalgmod 12109 The result of the  mod operator satisfies the requirements for the remainder  R in the division algorithm for a positive divisor (compare divalg2 12108 and divalgb 12107). This demonstration theorem justifies the use of  mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  =  ( N  mod  D )  <-> 
 ( R  e.  NN0  /\  ( R  <  D  /\  D  ||  ( N  -  R ) ) ) ) )
 
Theoremdivalgmodcl 12110 The result of the  mod operator satisfies the requirements for the remainder  R in the division algorithm for a positive divisor. Variant of divalgmod 12109. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by AV, 21-Aug-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  R  e.  NN0 )  ->  ( R  =  ( N  mod  D )  <-> 
 ( R  <  D  /\  D  ||  ( N  -  R ) ) ) )
 
Theoremmodremain 12111* The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( R  e.  NN0  /\  R  <  D ) )  ->  ( ( N  mod  D )  =  R  <->  E. z  e.  ZZ  ( ( z  x.  D )  +  R )  =  N )
 )
 
Theoremndvdssub 12112 Corollary of the division algorithm. If an integer  D greater than  1 divides  N, then it does not divide any of  N  -  1,  N  -  2...  N  -  ( D  -  1 ). (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  ->  ( D  ||  N  ->  -.  D  ||  ( N  -  K ) ) )
 
Theoremndvdsadd 12113 Corollary of the division algorithm. If an integer  D greater than  1 divides  N, then it does not divide any of  N  +  1,  N  +  2...  N  +  ( D  -  1 ). (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  ->  ( D  ||  N  ->  -.  D  ||  ( N  +  K ) ) )
 
Theoremndvdsp1 12114 Special case of ndvdsadd 12113. If an integer  D greater than  1 divides  N, it does not divide  N  +  1. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  1  <  D ) 
 ->  ( D  ||  N  ->  -.  D  ||  ( N  +  1 )
 ) )
 
Theoremndvdsi 12115 A quick test for non-divisibility. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN   &    |-  Q  e.  NN0   &    |-  R  e.  NN   &    |-  (
 ( A  x.  Q )  +  R )  =  B   &    |-  R  <  A   =>    |-  -.  A  ||  B
 
Theorem5ndvds3 12116 5 does not divide 3. (Contributed by AV, 8-Sep-2025.)
 |- 
 -.  5  ||  3
 
Theorem5ndvds6 12117 5 does not divide 6. (Contributed by AV, 8-Sep-2025.)
 |- 
 -.  5  ||  6
 
Theoremflodddiv4 12118 The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.)
 |-  ( ( M  e.  ZZ  /\  N  =  ( ( 2  x.  M )  +  1 )
 )  ->  ( |_ `  ( N  /  4
 ) )  =  if ( 2  ||  M ,  ( M  /  2
 ) ,  ( ( M  -  1 ) 
 /  2 ) ) )
 
Theoremfldivndvdslt 12119 The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021.)
 |-  ( ( K  e.  ZZ  /\  ( L  e.  ZZ  /\  L  =/=  0
 )  /\  -.  L  ||  K )  ->  ( |_ `  ( K  /  L ) )  <  ( K 
 /  L ) )
 
Theoremflodddiv4lt 12120 The floor of an odd number divided by 4 is less than the odd number divided by 4. (Contributed by AV, 4-Jul-2021.)
 |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( |_ `  ( N  /  4
 ) )  <  ( N  /  4 ) )
 
Theoremflodddiv4t2lthalf 12121 The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.)
 |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( ( |_ `  ( N 
 /  4 ) )  x.  2 )  < 
 ( N  /  2
 ) )
 
5.1.4  Bit sequences
 
Syntaxcbits 12122 Define the binary bits of an integer.
 class bits
 
Definitiondf-bits 12123* Define the binary bits of an integer. The expression  M  e.  (bits `  N ) means that the  M-th bit of  N is 1 (and its negation means the bit is 0). (Contributed by Mario Carneiro, 4-Sep-2016.)
 |- bits  =  ( n  e.  ZZ  |->  { m  e.  NN0  |  -.  2  ||  ( |_ `  ( n  /  (
 2 ^ m ) ) ) } )
 
Theorembitsfval 12124* Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( N  e.  ZZ  ->  (bits `  N )  =  { m  e.  NN0  |  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ m ) ) ) }
 )
 
Theorembitsval 12125 Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( M  e.  (bits `  N )  <->  ( N  e.  ZZ  /\  M  e.  NN0  /\ 
 -.  2  ||  ( |_ `  ( N  /  ( 2 ^ M ) ) ) ) )
 
Theorembitsval2 12126 Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  ->  ( M  e.  (bits `  N )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ M ) ) ) ) )
 
Theorembitsss 12127 The set of bits of an integer is a subset of  NN0. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  (bits `  N )  C_ 
 NN0
 
Theorembitsf 12128 The bits function is a function from integers to subsets of nonnegative integers. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |- bits : ZZ --> ~P NN0
 
Theorembitsdc 12129 Whether a bit is set is decidable. (Contributed by Jim Kingdon, 31-Oct-2025.)
 |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  -> DECID  M  e.  (bits `  N ) )
 
Theorembits0 12130 Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( N  e.  ZZ  ->  ( 0  e.  (bits `  N )  <->  -.  2  ||  N ) )
 
Theorembits0e 12131 The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( N  e.  ZZ  ->  -.  0  e.  (bits `  ( 2  x.  N ) ) )
 
Theorembits0o 12132 The zeroth bit of an odd number is one. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( N  e.  ZZ  ->  0  e.  (bits `  ( ( 2  x.  N )  +  1 ) ) )
 
Theorembitsp1 12133 The  M  +  1-th bit of  N is the  M-th bit of  |_ ( N  / 
2 ). (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  ->  ( ( M  +  1 )  e.  (bits `  N )  <->  M  e.  (bits `  ( |_ `  ( N  / 
 2 ) ) ) ) )
 
Theorembitsp1e 12134 The  M  +  1-th bit of  2 N is the  M-th bit of  N. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  ->  ( ( M  +  1 )  e.  (bits `  ( 2  x.  N ) )  <->  M  e.  (bits `  N ) ) )
 
Theorembitsp1o 12135 The  M  +  1-th bit of  2 N  +  1 is the  M-th bit of  N. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  ->  ( ( M  +  1 )  e.  (bits `  ( (
 2  x.  N )  +  1 ) )  <->  M  e.  (bits `  N ) ) )
 
Theorembitsfzolem 12136* Lemma for bitsfzo 12137. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 1-Oct-2020.)
 |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  (bits `  N )  C_  (
 0..^ M ) )   &    |-  S  = inf ( { n  e.  NN0  |  N  <  ( 2 ^ n ) } ,  RR ,  <  )   =>    |-  ( ph  ->  N  e.  ( 0..^ ( 2 ^ M ) ) )
 
Theorembitsfzo 12137 The bits of a number are all at positions less than  M iff the number is nonnegative and less than  2 ^ M. (Contributed by Mario Carneiro, 5-Sep-2016.) (Proof shortened by AV, 1-Oct-2020.)
 |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  ->  ( N  e.  ( 0..^ ( 2 ^ M ) )  <->  (bits `  N )  C_  ( 0..^ M ) ) )
 
Theorembitsmod 12138 Truncating the bit sequence after some  M is equivalent to reducing the argument  mod  2 ^ M. (Contributed by Mario Carneiro, 6-Sep-2016.)
 |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  ->  (bits `  ( N  mod  ( 2 ^ M ) ) )  =  ( (bits `  N )  i^i  ( 0..^ M ) ) )
 
Theorembitsfi 12139 Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( N  e.  NN0  ->  (bits `  N )  e. 
 Fin )
 
Theorembitscmp 12140 The bit complement of  N is  -u N  - 
1. (Thus, by bitsfi 12139, all negative numbers have cofinite bits representations.) (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( N  e.  ZZ  ->  ( NN0  \  (bits `  N ) )  =  (bits `  ( -u N  -  1 ) ) )
 
Theorem0bits 12141 The bits of zero. (Contributed by Mario Carneiro, 6-Sep-2016.)
 |-  (bits `  0 )  =  (/)
 
Theoremm1bits 12142 The bits of negative one. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  (bits `  -u 1 )  =  NN0
 
Theorembitsinv1lem 12143 Lemma for bitsinv1 12144. (Contributed by Mario Carneiro, 22-Sep-2016.)
 |-  ( ( N  e.  ZZ  /\  M  e.  NN0 )  ->  ( N  mod  ( 2 ^ ( M  +  1 )
 ) )  =  ( ( N  mod  (
 2 ^ M ) )  +  if ( M  e.  (bits `  N ) ,  ( 2 ^ M ) ,  0 ) ) )
 
Theorembitsinv1 12144* There is an explicit inverse to the bits function for nonnegative integers (which can be extended to negative integers using bitscmp 12140), part 1. (Contributed by Mario Carneiro, 7-Sep-2016.)
 |-  ( N  e.  NN0  ->  sum_ n  e.  (bits `  N ) ( 2 ^ n )  =  N )
 
5.1.5  The greatest common divisor operator
 
Syntaxcgcd 12145 Extend the definition of a class to include the greatest common divisor operator.
 class  gcd
 
Definitiondf-gcd 12146* Define the  gcd operator. For example,  ( -u 6  gcd  9 )  =  3 (ex-gcd 15461). (Contributed by Paul Chapman, 21-Mar-2011.)
 |- 
 gcd  =  ( x  e.  ZZ ,  y  e. 
 ZZ  |->  if ( ( x  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n  ||  x  /\  n  ||  y ) } ,  RR ,  <  ) ) )
 
Theoremgcdmndc 12147 Decidablity lemma used in various proofs related to  gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID 
 ( M  =  0 
 /\  N  =  0 ) )
 
Theoremdvdsbnd 12148* There is an upper bound to the divisors of a nonzero integer. (Contributed by Jim Kingdon, 11-Dec-2021.)
 |-  ( ( A  e.  ZZ  /\  A  =/=  0
 )  ->  E. n  e.  NN  A. m  e.  ( ZZ>= `  n )  -.  m  ||  A )
 
Theoremgcdsupex 12149* Existence of the supremum used in defining  gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
 |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ( n  ||  X  /\  n  ||  Y ) }  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  { n  e.  ZZ  |  ( n  ||  X  /\  n  ||  Y ) } y  <  z
 ) ) )
 
Theoremgcdsupcl 12150* Closure of the supremum used in defining  gcd. A lemma for gcdval 12151 and gcdn0cl 12154. (Contributed by Jim Kingdon, 11-Dec-2021.)
 |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  -.  ( X  =  0  /\  Y  =  0 ) )  ->  sup ( { n  e.  ZZ  |  ( n  ||  X  /\  n  ||  Y ) } ,  RR ,  <  )  e.  NN )
 
Theoremgcdval 12151* The value of the  gcd operator.  ( M  gcd  N ) is the greatest common divisor of  M and  N. If  M and  N are both  0, the result is defined conventionally as  0. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 10-Nov-2013.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  =  if (
 ( M  =  0 
 /\  N  =  0 ) ,  0 , 
 sup ( { n  e.  ZZ  |  ( n 
 ||  M  /\  n  ||  N ) } ,  RR ,  <  ) ) )
 
Theoremgcd0val 12152 The value, by convention, of the 
gcd operator when both operands are 0. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( 0  gcd  0
 )  =  0
 
Theoremgcdn0val 12153* The value of the  gcd operator when at least one operand is nonzero. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N ) } ,  RR ,  <  ) )
 
Theoremgcdn0cl 12154 Closure of the  gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  e.  NN )
 
Theoremgcddvds 12155 The gcd of two integers divides each of them. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M 
 gcd  N )  ||  M  /\  ( M  gcd  N )  ||  N ) )
 
Theoremdvdslegcd 12156 An integer which divides both operands of the  gcd operator is bounded by it. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 )
 )  ->  ( ( K  ||  M  /\  K  ||  N )  ->  K  <_  ( M  gcd  N ) ) )
 
Theoremnndvdslegcd 12157 A positive integer which divides both positive operands of the  gcd operator is bounded by it. (Contributed by AV, 9-Aug-2020.)
 |-  ( ( K  e.  NN  /\  M  e.  NN  /\  N  e.  NN )  ->  ( ( K  ||  M  /\  K  ||  N )  ->  K  <_  ( M  gcd  N ) ) )
 
Theoremgcdcl 12158 Closure of the  gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  e.  NN0 )
 
Theoremgcdnncl 12159 Closure of the  gcd operator. (Contributed by Thierry Arnoux, 2-Feb-2020.)
 |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  N )  e.  NN )
 
Theoremgcdcld 12160 Closure of the  gcd operator. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( M  gcd  N )  e.  NN0 )
 
Theoremgcd2n0cl 12161 Closure of the  gcd operator if the second operand is not 0. (Contributed by AV, 10-Jul-2021.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  ( M  gcd  N )  e.  NN )
 
Theoremzeqzmulgcd 12162* An integer is the product of an integer and the gcd of it and another integer. (Contributed by AV, 11-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. n  e.  ZZ  A  =  ( n  x.  ( A  gcd  B ) ) )
 
Theoremdivgcdz 12163 An integer divided by the gcd of it and a nonzero integer is an integer. (Contributed by AV, 11-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  B  =/=  0 ) 
 ->  ( A  /  ( A  gcd  B ) )  e.  ZZ )
 
Theoremgcdf 12164 Domain and codomain of the  gcd operator. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 16-Nov-2013.)
 |- 
 gcd  : ( ZZ  X.  ZZ ) --> NN0
 
Theoremgcdcom 12165 The  gcd operator is commutative. Theorem 1.4(a) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  =  ( N 
 gcd  M ) )
 
Theoremgcdcomd 12166 The  gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( M  gcd  N )  =  ( N  gcd  M ) )
 
Theoremdivgcdnn 12167 A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021.)
 |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( A  /  ( A  gcd  B ) )  e.  NN )
 
Theoremdivgcdnnr 12168 A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021.)
 |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( A  /  ( B  gcd  A ) )  e.  NN )
 
Theoremgcdeq0 12169 The gcd of two integers is zero iff they are both zero. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M 
 gcd  N )  =  0  <-> 
 ( M  =  0 
 /\  N  =  0 ) ) )
 
Theoremgcdn0gt0 12170 The gcd of two integers is positive (nonzero) iff they are not both zero. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  <->  0  <  ( M  gcd  N ) ) )
 
Theoremgcd0id 12171 The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( N  e.  ZZ  ->  ( 0  gcd  N )  =  ( abs `  N ) )
 
Theoremgcdid0 12172 The gcd of an integer and 0 is the integer's absolute value. Theorem 1.4(d)2 in [ApostolNT] p. 16. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( N  e.  ZZ  ->  ( N  gcd  0
 )  =  ( abs `  N ) )
 
Theoremnn0gcdid0 12173 The gcd of a nonnegative integer with 0 is itself. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( N  e.  NN0  ->  ( N  gcd  0 )  =  N )
 
Theoremgcdneg 12174 Negating one operand of the  gcd operator does not alter the result. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  -u N )  =  ( M  gcd  N ) )
 
Theoremneggcd 12175 Negating one operand of the  gcd operator does not alter the result. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u M  gcd  N )  =  ( M  gcd  N ) )
 
Theoremgcdaddm 12176 Adding a multiple of one operand of the  gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  =  ( M  gcd  ( N  +  ( K  x.  M ) ) ) )
 
Theoremgcdadd 12177 The GCD of two numbers is the same as the GCD of the left and their sum. (Contributed by Scott Fenton, 20-Apr-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  =  ( M 
 gcd  ( N  +  M ) ) )
 
Theoremgcdid 12178 The gcd of a number and itself is its absolute value. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( N  e.  ZZ  ->  ( N  gcd  N )  =  ( abs `  N ) )
 
Theoremgcd1 12179 The gcd of a number with 1 is 1. Theorem 1.4(d)1 in [ApostolNT] p. 16. (Contributed by Mario Carneiro, 19-Feb-2014.)
 |-  ( M  e.  ZZ  ->  ( M  gcd  1
 )  =  1 )
 
Theoremgcdabs 12180 The gcd of two integers is the same as that of their absolute values. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M )  gcd  ( abs `  N ) )  =  ( M  gcd  N ) )
 
Theoremgcdabs1 12181  gcd of the absolute value of the first operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( abs `  N )  gcd  M )  =  ( N  gcd  M ) )
 
Theoremgcdabs2 12182  gcd of the absolute value of the second operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  gcd  ( abs `  M )
 )  =  ( N 
 gcd  M ) )
 
Theoremmodgcd 12183 The gcd remains unchanged if one operand is replaced with its remainder modulo the other. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M 
 mod  N )  gcd  N )  =  ( M  gcd  N ) )
 
Theorem1gcd 12184 The GCD of one and an integer is one. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( M  e.  ZZ  ->  ( 1  gcd  M )  =  1 )
 
Theoremgcdmultipled 12185 The greatest common divisor of a nonnegative integer  M and a multiple of it is  M itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  ( M  gcd  ( N  x.  M ) )  =  M )
 
Theoremdvdsgcdidd 12186 The greatest common divisor of a positive integer and another integer it divides is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  M  ||  N )   =>    |-  ( ph  ->  ( M  gcd  N )  =  M )
 
Theorem6gcd4e2 12187 The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used:  ( 6  gcd  4 )  =  ( ( 4  +  2 )  gcd  4 )  =  ( 2  gcd  4 ) and  ( 2  gcd  4 )  =  ( 2  gcd  ( 2  +  2 ) )  =  ( 2  gcd  2 )  =  2. (Contributed by AV, 27-Aug-2020.)
 |-  ( 6  gcd  4
 )  =  2
 
5.1.6  Bézout's identity
 
Theorembezoutlemnewy 12188* Lemma for Bézout's identity. The is-bezout predicate holds for  ( y  mod 
W ). (Contributed by Jim Kingdon, 6-Jan-2022.)
 |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )   &    |-  ( th  ->  A  e.  NN0 )   &    |-  ( th  ->  B  e.  NN0 )   &    |-  ( th  ->  W  e.  NN )   &    |-  ( th  ->  [ y  /  r ] ph )   &    |-  ( th  ->  y  e.  NN0 )   &    |-  ( th  ->  [. W  /  r ]. ph )   =>    |-  ( th  ->  [. ( y  mod  W )  /  r ]. ph )
 
Theorembezoutlemstep 12189* Lemma for Bézout's identity. This is the induction step for the proof by induction. (Contributed by Jim Kingdon, 3-Jan-2022.)
 |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )   &    |-  ( th  ->  A  e.  NN0 )   &    |-  ( th  ->  B  e.  NN0 )   &    |-  ( th  ->  W  e.  NN )   &    |-  ( th  ->  [ y  /  r ] ph )   &    |-  ( th  ->  y  e.  NN0 )   &    |-  ( th  ->  [. W  /  r ]. ph )   &    |-  ( ps 
 <-> 
 A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) ) )   &    |-  ( ( th  /\  [. ( y  mod  W )  /  r ]. ph )  ->  E. r  e.  NN0  ( [. ( y  mod  W )  /  x ]. [. W  /  y ]. ps  /\  ph ) )   &    |-  F/ x th   &    |-  F/ r th   =>    |-  ( th  ->  E. r  e.  NN0  ( [. W  /  x ].
 ps  /\  ph ) )
 
Theorembezoutlemmain 12190* Lemma for Bézout's identity. This is the main result which we prove by induction and which represents the application of the Extended Euclidean algorithm. (Contributed by Jim Kingdon, 30-Dec-2021.)
 |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )   &    |-  ( ps  <->  A. z  e.  NN0  ( z  ||  r  ->  ( z  ||  x  /\  z  ||  y ) ) )   &    |-  ( th  ->  A  e.  NN0 )   &    |-  ( th  ->  B  e.  NN0 )   =>    |-  ( th  ->  A. x  e.  NN0  ( [ x  /  r ] ph  ->  A. y  e.  NN0  ( [ y  /  r ] ph  ->  E. r  e.  NN0  ( ps  /\  ph ) ) ) )
 
Theorembezoutlema 12191* Lemma for Bézout's identity. The is-bezout condition is satisfied by  A. (Contributed by Jim Kingdon, 30-Dec-2021.)
 |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )   &    |-  ( th  ->  A  e.  NN0 )   &    |-  ( th  ->  B  e.  NN0 )   =>    |-  ( th  ->  [. A  /  r ]. ph )
 
Theorembezoutlemb 12192* Lemma for Bézout's identity. The is-bezout condition is satisfied by  B. (Contributed by Jim Kingdon, 30-Dec-2021.)
 |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )   &    |-  ( th  ->  A  e.  NN0 )   &    |-  ( th  ->  B  e.  NN0 )   =>    |-  ( th  ->  [. B  /  r ]. ph )
 
Theorembezoutlemex 12193* Lemma for Bézout's identity. Existence of a number which we will later show to be the greater common divisor and its decomposition into cofactors. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jan-2022.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) 
 /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
 
Theorembezoutlemzz 12194* Lemma for Bézout's identity. Like bezoutlemex 12193 but where ' z ' is any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) 
 /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
 
Theorembezoutlemaz 12195* Lemma for Bézout's identity. Like bezoutlemzz 12194 but where ' A ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) 
 /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
 
Theorembezoutlembz 12196* Lemma for Bézout's identity. Like bezoutlemaz 12195 but where ' B ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) 
 /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
 
Theorembezoutlembi 12197* Lemma for Bézout's identity. Like bezoutlembz 12196 but the greatest common divisor condition is a biconditional, not just an implication. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e. 
 ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
 
Theorembezoutlemmo 12198* Lemma for Bézout's identity. There is at most one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  D  e.  NN0 )   &    |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D 
 <->  ( z  ||  A  /\  z  ||  B ) ) )   &    |-  ( ph  ->  E  e.  NN0 )   &    |-  ( ph  ->  A. z  e.  ZZ  (
 z  ||  E  <->  ( z  ||  A  /\  z  ||  B ) ) )   =>    |-  ( ph  ->  D  =  E )
 
Theorembezoutlemeu 12199* Lemma for Bézout's identity. There is exactly one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  D  e.  NN0 )   &    |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D 
 <->  ( z  ||  A  /\  z  ||  B ) ) )   =>    |-  ( ph  ->  E! d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
 <->  ( z  ||  A  /\  z  ||  B ) ) )
 
Theorembezoutlemle 12200* Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the largest number which divides both  A and  B. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   &    |-  ( ph  ->  D  e.  NN0 )   &    |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D 
 <->  ( z  ||  A  /\  z  ||  B ) ) )   &    |-  ( ph  ->  -.  ( A  =  0 
 /\  B  =  0 ) )   =>    |-  ( ph  ->  A. z  e.  ZZ  ( ( z 
 ||  A  /\  z  ||  B )  ->  z  <_  D ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >