ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmssnn GIF version

Theorem prmssnn 12600
Description: The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
prmssnn ℙ ⊆ ℕ

Proof of Theorem prmssnn
StepHypRef Expression
1 prmnn 12598 . 2 (𝑥 ∈ ℙ → 𝑥 ∈ ℕ)
21ssriv 3208 1 ℙ ⊆ ℕ
Colors of variables: wff set class
Syntax hints:  wss 3177  cn 9078  cprime 12595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rab 2497  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-prm 12596
This theorem is referenced by:  prmex  12601  1arith  12856  prminf  12992
  Copyright terms: Public domain W3C validator