ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmssnn GIF version

Theorem prmssnn 11993
Description: The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
prmssnn ℙ ⊆ ℕ

Proof of Theorem prmssnn
StepHypRef Expression
1 prmnn 11991 . 2 (𝑥 ∈ ℙ → 𝑥 ∈ ℕ)
21ssriv 3132 1 ℙ ⊆ ℕ
Colors of variables: wff set class
Syntax hints:  wss 3102  cn 8834  cprime 11988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rab 2444  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-pr 3567  df-op 3569  df-br 3967  df-prm 11989
This theorem is referenced by:  prmex  11994
  Copyright terms: Public domain W3C validator