ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmex Unicode version

Theorem prmex 12127
Description: The set of prime numbers exists. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
prmex  |-  Prime  e.  _V

Proof of Theorem prmex
StepHypRef Expression
1 nnex 8939 . 2  |-  NN  e.  _V
2 prmssnn 12126 . 2  |-  Prime  C_  NN
31, 2ssexi 4153 1  |-  Prime  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2158   _Vcvv 2749   NNcn 8933   Primecprime 12121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-sep 4133  ax-cnex 7916  ax-resscn 7917  ax-1re 7919  ax-addrcl 7922
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rab 2474  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-sn 3610  df-pr 3611  df-op 3613  df-int 3857  df-br 4016  df-inn 8934  df-prm 12122
This theorem is referenced by:  1arithlem1  12375  1arith  12379
  Copyright terms: Public domain W3C validator