ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmex Unicode version

Theorem prmex 12635
Description: The set of prime numbers exists. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
prmex  |-  Prime  e.  _V

Proof of Theorem prmex
StepHypRef Expression
1 nnex 9116 . 2  |-  NN  e.  _V
2 prmssnn 12634 . 2  |-  Prime  C_  NN
31, 2ssexi 4222 1  |-  Prime  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   _Vcvv 2799   NNcn 9110   Primecprime 12629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-int 3924  df-br 4084  df-inn 9111  df-prm 12630
This theorem is referenced by:  1arithlem1  12886  1arith  12890
  Copyright terms: Public domain W3C validator