ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmex Unicode version

Theorem prmex 10889
Description: The set of prime numbers exists. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
prmex  |-  Prime  e.  _V

Proof of Theorem prmex
StepHypRef Expression
1 nnex 8340 . 2  |-  NN  e.  _V
2 prmssnn 10888 . 2  |-  Prime  C_  NN
31, 2ssexi 3945 1  |-  Prime  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1436   _Vcvv 2614   NNcn 8334   Primecprime 10883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-cnex 7357  ax-resscn 7358  ax-1re 7360  ax-addrcl 7363
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rab 2364  df-v 2616  df-un 2990  df-in 2992  df-ss 2999  df-sn 3431  df-pr 3432  df-op 3434  df-int 3666  df-br 3815  df-inn 8335  df-prm 10884
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator